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Abstract: This study investigates the issue of energy dependency and its 

ecological impact in the context of the economic evolution of the 21st 

century. The research aims to strike a balance between economic growth 

and environmental protection by distinguishing between sustainable and 

non-sustainable energy use and exploring their spatial impact on the 

environment. To ensure statistical robustness, Principal Component 

Analysis (PCA) was applied to eliminate multicollinearity, and a Spatially 

Lagged X Model (SLX) was employed to identify the significant factors 

influencing a country's ecological footprint. The results of the SLX 

regression demonstrate that the Green Economic Development and 

Unsustainable Urbanization factors have a significant effect on a country's 

ecological footprint. An increase in the Green Economic Development factor 

indicates that countries with rapid economic growth tend to overuse natural 

resources. Conversely, the Unsustainable Urbanization factor emphasizes 

the significance of population density and consumption of traditional energy 

sources in addressing environmental degradation. Additionally, the spatial 

dependency analysis underscores the importance of taking into account a 

country's neighbors' policies and actions alongside its own. This finding 

emphasizes the need for regional and global cooperation in addressing 

environmental challenges and achieving sustainable development goals. 
Overall, the research findings offer valuable insights for shaping policies 

and initiatives aimed at advancing sustainable development and mitigating 

environmental degradation. 
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Introduction 

The issue of pollution has become increasingly concerning in recent decades. Its impact on 

everyday life is becoming more visible, and the transition to clean energy is now a necessity 

rather than a desire. Our decisions and actions will determine whether, or not, we will be able to 

access modern forms of energy without compromising the systems that support life around the 

globe. 

In the current economic context, the export of energy plays a major role, but human activities 

undertaken do not have a positive effect on the natural environment. Over the past century, the 

burning of fossil fuels such as coal and oil has increased the concentration of atmospheric 

carbon dioxide (CO2) and to a lesser extent, deforestation for agriculture, industry, and other 

human activities have shared the same impact (IPCC, 2013). 

Overall, the published evidence indicates that the damage from climate change is very likely to 

be significant and will only increase over time. Without prompt action to reduce emissions and 

limit its impact, renewable energy will not be sufficient to protect our own lives, livelihoods and 

the natural world on which humanity depends. The Earth's resources are depleting faster than 

they can be replenished, which makes it necessary to adopt and promote a sustainable way of 

life. An alternative to the use of classical energies is represented by the implementation of 

renewable energy sources and their expansion on a large scale. Renewable energy sources offer 

opportunities for social and economic development alongside climate change mitigation. 

Renewable energy is the most flexible form of energy, representing one of the essential 

infrastructure elements for socio-economic development (Dabboussi and Abid, 2022). 

Globalization and urbanization are crucial factors to consider in promoting the use of renewable 

energy sources. As countries become more connected and urbanized, energy demands increase, 

resulting in increased carbon emissions. Therefore, implementing renewable energy in urban 

areas is an essential step toward sustainable development (Salim and Shafiei, 2014). 

Additionally, globalization provides opportunities for international cooperation in promoting 

renewable energy, as countries can collaborate to share resources, knowledge, and funding for 

renewable energy projects (Baloch et al., 2021). 

Literature Review 

The relationship between renewable energy consumption and economic development has been 

and continues to be a subject of significant interest among the scientific community. The 

economic benefits of renewable energy sources are multiple. According to Ohler and Fetters 

(2014), the implementation of alternative energy sources, represented by biomass, geothermal, 

hydroelectric, solar or wind energy, contributes in the long term to GDP growth. Radmehr et al. 

(2020) suggests that the economic benefits are not only limited to the implementing country, but 

also to neighboring countries, possibly even leading to trade development. 

Li and Lee (2022) describe the relationship between economic growth and renewable energy 

consumption as bidirectional. Progress in the renewable energy sector can help stimulate 

economic growth and conversely, a strong economy can facilitate the development of renewable 

energy, requiring substantial investment, as they are more expensive than non-renewable 

resources. Considering all these benefits, it is not surprising that many developed and 

developing countries are making considerable efforts to replace conventional energy production 

with renewable sources (Ji et. al, 2021). 

Empirical findings suggest that the use of renewable energy has a positive impact on per capita 

income (Padhan et. al, 2020). However, de Oliveira and Moutinho (2022) have noted that, 

contrary to expectations, modern energy consumption methods, including renewable sources, 



 Exploring the Spatial Patterns of Ecological Footprints from the Perspective of Renewable and … 77 

 

have a negative impact on national economies in some BRICS countries. As countries' 

economies expand and develop, so do their energy needs. Compared to developed economies, 

energy demand is growing fastest in emerging economies.  

Sustainable economic growth is the main target of several countries around the world, so 

understanding the causal relationship between energy consumption and economic growth has 

been addressed in the study by Ohler and Fetters (2014), Padhan et. al. (2020), respectively by 

de Oliveira and Moutinho (2022). Additionally, Mounir and El-Houjjaji (2022) argue that, from 

an economic standpoint, prioritizing "clean" energy sources, such as renewable energy that 

produces no emissions and relies on energy-efficient practices, is crucial for achieving 

sustainable growth.  

In the context of these efforts, the concept of ecological globalization has emerged as a means 

of expanding global networks to promote international collaboration on environmental 

practices. This involves coordinated efforts to increase connectivity and develop shared 

standards for sustainability across borders. The higher the level of globalization (from an 

economic, political or social perspective) the more the consumption of renewable energy is 

encouraged (Padhan et. al, 2020). Rahman (2020) and Baloch et al. (2021) claim that 

globalization has a significant negative impact on greenhouse gas emissions, which implies an 

improvement in environmental quality.  

However, Miao et al. (2022) state that while increased income is closely related to high levels of 

output, it also leads to more emissions being produced. This will end once economic growth and 

incomes reach a certain point. Usman et al. (2022) found that non-renewable energy, economic 

development and natural resources have an increasing impact on the ecological footprint, while 

renewable energy and globalization reduce it. Most of the activities that endanger the 

regeneration and assimilation capacity of the environment can be closely related to the 

production of goods and services based on the depletion and refinement of natural resources.  

The capacity for regeneration and assimilation is thus described as ecological footprint. 

Adekoya et al. (2022) argues that the use of non-renewable energy naturally leads to 

environmental degradation through carbon emissions, along with other harmful substances. For 

example, oil-importing countries are mainly more advanced, having a high level of energy 

efficiency compared to oil-exporting countries that develop to a large extent through the 

previously mentioned means. It is also observed that the use of energy from renewable sources 

does not have a significant impact on the ecological footprint of oil-producing countries (İnal et 

al., 2022).  

The rapid increase in population density due to economic development and urbanization places 

significant stress on the local environment, especially in developing economies. This can result 

in a greater exodus of population from rural areas to larger cities, leading to the expansion of 

smaller cities and increased concentration of economic activity. As urbanization accelerates, 

there is a shift from less energy-intensive agriculture to more energy-intensive manufacturing, 

fuel switching, and increased mobility. This leads to greater demand for transportation and 

travel, resulting in increased energy consumption and a larger ecological footprint. As a result, 

urbanization can have a significant negative impact on the environment, especially in terms of 

greenhouse gas emissions and the overall ecological footprint (Fang et al., 2022). 

Shafiei and Salim (2014) researched renewable and non-renewable energy consumption in 

OECD countries, along with CO2 emissions and the empirical results of the comparative 

analysis state the fact that classic types of consumption amplify carbon dioxide emissions, 

contrary to renewable ones which minimize them. 

On the contrary, Apergis et. al (2010) argue that renewable energy does not contribute 

significantly to the process of reducing polluting emissions. This effect is explained by the 

inefficiency of energy storage technologies available at the time of the study. 
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The study by Al-Mulali et al. (2015) investigates the environmental Kuznets curve by focusing 

its attention on the ecological footprint as an indicator of environmental degradation. Including 

a ninety-three countries examination, the study finds that the environmental performance of 

those countries is related to their income. Using panel data, the research is focusing its attention 

on how the ecological footprint and the environmental damage that the country is causing are 

directly proportional. The amplification of environmental degradation using non-renewable 

energy is explained by the fact that the continuous extraction of natural resources leads to their 

significant decrease. On the other hand, financial development has a negative effect on the 

ecological footprint, which indicates that financial development reduces environmental damage 

in these countries.  

Likewise, the study by Balsalobre-Lorente et al. (2022) examines the environmental Kuznets 

curve and the pollution haven hypothesis in PIIGS countries (Portugal, Ireland, Italy, Greece, 

and Spain). The study finds that the environmental performance of PIIGS countries is related to 

their economic complexity. It also finds that some PIIGS countries may act as pollution havens, 

attracting polluting industries due to weaker environmental regulations. Using the dynamic OLS 

estimator, it was observed that the initial stage of economic development generates a high level 

of environmental pollution, represented by CO2 emissions.  

The research conducted by Doğan et al. (2020) examines the relationship between economic 

complexity, renewable energy consumption, and carbon emissions in the 28 selected OECD 

countries over the period of 1990-2014. Using alternative panel data techniques like AMG 

(Averaging Group Means), ARDL (Autoregressive Distributed Lag) and DOLS (Dynamic 

OLS), the research is focused on the OECD countries due to their high level of energy 

consumption and the fact that their energy mix is still dominated by non-renewable sources, 

which contributes to sustainable development issues. It finds that economic complexity has a 

negative impact on carbon emissions and that the technological change and economic 

complexity can reduce environmental externalities. This study is suggesting that economic 

complexity can help mitigate environmental degradation and OECD countries should focus on 

producing more complex products related to air quality. On the other hand it sustains the idea 

that the use of renewable energy sources helps to reduce the environmental impact. 

The study conducted by Zambrano-Monserrate et al. (2020) aimed to identify the spatial 

correlation and the direct, indirect, and total spatial effects of biocapacity, GDP, and trade 

openness on the ecological footprint of 158 countries in the short and long run. Using a dynamic 

spatial Durbin model (SDM) with spatial fixed effects, the authors found significant impacts of 

spatial interdependence. Specifically, they observed that biocapacity, trade openness, and GDP 

contribute to an increase in the ecological footprint of countries. However, the effects of 

biocapacity and trade openness are mostly indirect, affecting the ecological footprint in both 

short- and long-term horizons, while the effect of GDP is mainly direct. Taken together, these 

effects explain a substantial portion of the variation in the ecological footprint. 

Ramezani et al. (2022) analyzed the ecological footprint (EF) and its determinants in MENA 

countries, with a focus on exploring spatial relationships using the Spatial Durbin Model 

(SDM). They found that significant spatial dependence existed in both the EF and its 

determinants, indicating that environmental performance and economic conditions in one 

country affect the environmental quality of neighboring countries. 

Wang et al. (2013) proposed a spatial econometric approach to investigate the relationship 

between economic growth and environmental impact, using ecological footprint as an indicator. 

The study reveals significant spatial autocorrelation in the dataset of 150 countries' ecological 

footprint, indicating the need for a different model specification than traditional methods. The 

findings do not support the inverted U-shape Environmental Kuznets Curve (EKC) hypothesis 

for ecological footprint, and highlight that domestic ecological footprint is influenced by 

neighboring countries' ecological footprint, income, and biocapacity. 



 Exploring the Spatial Patterns of Ecological Footprints from the Perspective of Renewable and … 79 

 

Moreover, Kassouri (2021) conducted the first empirical investigation on the spatial spillover 

effects of urbanization on family footprints in 28 Sub-Saharan African (SSA) countries from 

2000 to 2017. Using a spatial panel model based on the STIRPAT framework, the study 

analyzed the impacts of urbanization on these footprint indicators across different countries. The 

findings revealed significant positive spatial correlations between footprint indicators in the 

SSA region, highlighting the need for coordinated environmental and biodiversity policies for 

sustainable development. The study also found that while urbanization increases human-related 

pressures on water and land, it reduces pressures on ecosystems, emphasizing the need for 

sustainable resource utilization policies during rapid urbanization. 

Ke et al. (2021) conducted a case study on 280 Chinese cities from 2012 to 2018 and found a 

statistically significant positive spatial correlation among ecological footprints of cities in 

China's eastern and central regions but not in the western regions. The study underlines the need 

to promote clean energy use in industrial transfer and cross-regional trade to reduce dependence 

on traditional resources and improve the overall ecological environment quality in China. 

While prior research has explored the relationship between renewable energy consumption, 

economic development, and their ecological impact, it has often overlooked the 

multidimensional nature of economic complexity and energy efficiency. Existing studies 

frequently focus on isolated dimensions rather than a comprehensive view of these interactions. 

This study aims to contribute to the existing literature by adopting a multidimensional approach 

to explore the intricate relationship between economic complexity and energy efficiency. 

Recognizing the multifaceted nature of these factors, Principal Component Analysis (PCA) will 

be employed as a robust method to ensure the independence of the newly created variables.  

Moreover, the study seeks to spatially visualize the spillover effects to determine the relevance 

of neighboring policies and uncover global patterns. While local insights obtained from higher 

granularity data are valuable, the global perspective can significantly shape higher-level policy-

making and foster a deeper understanding of the intricate relationships between nations.  

Furthermore, recognizing the significance of spatial modeling, this study intends to go beyond a 

single approach. By utilizing multiple spatial models, the aim is to gain a comprehensive 

understanding of the spatial patterns and the ways in which economic complexity and energy 

efficiency interact within different contexts. 

Methodology 

The research aims to draw attention to a topic of major interest, namely energy dependence and 

its ecological impact, at a global level. 

In order to achieve the research objective, it is desired to highlight global patterns regarding the 

consumption of non-renewable and renewable energy, as well as greenhouse gas emissions, 

through principal component analysis. This involves reducing the complexity of the dataset 

while also creating new independent variables to address multicollinearity and improve the 

interpretability of the results. 

Principal Component Analysis (PCA) is a widely used technique in data preprocessing that 

helps to obtain a compact representation of a dataset. Instead of using the original many 

variables, PCA allows expressing the dataset in terms of a reduced set of principal components 

(Bro and Smilde, 2014). After determining the optimal number of principal components, it is 

common to perform a rotation of the retained components to facilitate their interpretation in 

PCA analysis. This process involves applying a linear transformation to the original set of 

components, resulting in a new set of rotated components. The primary goal of rotation is to 

obtain a more interpretable and meaningful representation of the data by aligning the axes of the 

rotated components with the underlying structure or patterns in the data (Abdi and Williams, 

2010).  
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Varimax rotation is a specific type of orthomax rotation that focuses on maximizing the sums of 

squares of the coefficients within each of the resultant vectors, as opposed to Quartimax 

rotation, which aims to maximize the sums of squares of the coefficients across the vectors for 

each of the original variables. Each rotated component is expected to be characterized by high 

loadings for a small subset of variables, while having low or near-zero loadings for the 

remaining variables. By maximizing the variance of the squared loadings within each rotated 

component, Varimax rotation aims to achieve a sparser and more structured representation of 

the data (Jackson, 2005). 

Further, this research aims to develop a spatial regression model, which highlights the 

dependence of the ecological footprint on non-renewable and renewable energy factors, at a 

global level. In order to accomplish the purpose of the study, several spatial regression models 

are estimated, including the Spatial Lagged X Model (SLX), Spatial Autoregressive Model 

(SAR), Spatial Error Model (SEM), Spatial Durbin Error Model (SDEM), Spatial Durbin Model 

(SDM), and Spatial Autoregressive with additional autoregressive error structure (SARAR) 

Model. 

Spatial autocorrelation is a statistical measure used to assess the similarity or dissimilarity 

between attribute values that are close to each other in geographical space. Positive spatial 

autocorrelation indicates that high or low attribute values tend to cluster together in space, while 

negative spatial autocorrelation suggests that neighboring locations exhibit contrasting attribute 

values. There are several indices available for quantifying spatial autocorrelation, with Moran's 

I statistic being widely used (Moran, 1948). Moran's I measures the strength of the linear 

association between an attribute (y) at a specific location and the weighted average of the same 

attribute at its neighboring locations (Wy) and can be interpreted as the regression slope of (y) 

on (Wy). 

The SLX model incorporates a spatial lag term that captures the spatial dependence of the 

dependent variable on exogenous variables and facilitates the parametrization of the spatial 

weights matrix, enabling the application of established econometric methods to assess the 

presence of endogenous explanatory variables (Halleck Vega and Elhorst, 2015). 

         𝑌 =  𝛼 + 𝑋𝛽 +  𝑊𝑋𝜃 +  𝜀                                                      (1) 

where α is the constant term, X denotes a matrix of exogenous explanatory variables, WXθ 

represents the exogenous interaction effects and ε is a vector of disturbance terms. 

Meanwhile, the Spatial Autoregressive Model (SAR) model includes a spatial lag term for the 

dependent variable itself. The usage of spatially lagged explanatory variables provides a distinct 

approach to capture spatial dependence and interrelatedness among neighboring observations. 

By including lagged values of explanatory variables, the model accounts for the potential impact 

of nearby observations on the dependent variable, which may not be captured by traditional 

regression models that solely rely on contemporaneous values (Drukker et al., 2013). 

𝑌 =  𝜌𝑊𝑌 +  𝛼 + 𝑋𝛽 +  𝜀                                                    (2) 

where ρWY is the endogenous interaction effect, α is the constant term, X denotes a matrix of 

exogenous explanatory variables and ε is a vector of disturbance terms. 

In the case of the Spatial Error Model (SEM), it accounts for spatial dependence in the error 

term through a spatial error term. They use an error term (u) and its spatially lagged counterpart 

(Wu) to model spatial autocorrelation. The error term (u) captures unobserved spatially 

correlated factors affecting the dependent variable, while the spatially lagged error term (Wu) 

measures the impact of neighboring errors on the error term of a particular observation (Chi and 

Zhu, 2008). 

𝑌 =  𝛼 +  𝑋𝛽 +  𝑢, with 𝑢 =  𝜆𝑊𝑢 +  𝜀                                            (3) 
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where α is the constant term, X denotes a matrix of exogenous explanatory variables, λWu 

represents the interaction effect among error terms and ε is a vector of disturbance terms. 

The spatial Durbin Error Model (SDEM) is an extension of the spatial lagged X (SLX) model 

that incorporates a spatially autocorrelated error structure. In the spatial Durbin error model, the 

error term is modeled as a combination of a spatial lag of the dependent variable and a spatial 

lag of the error term, allowing for the inclusion of spatial dependence in the error structure. This 

augmented SLX model accounts for the potential spatial autocorrelation in the error term, which 

may arise from spatially correlated factors that affect the dependent variable but are not 

included in the model (Lacombe et al., 2014). 

𝑌 =  𝛼 + 𝑋𝛽 +  𝑊𝑋𝜃 +  𝑢, with 𝑢 =  𝜆𝑊𝑢 +  𝜀                                    (4) 

where α is the constant term, X denotes a matrix of exogenous explanatory variables, WXθ 

represents the exogenous interaction effects, λWu represents the interaction effect among error 

terms and ε is a vector of disturbance terms. 

Regarding the Spatial Durbin Model (SDM), it includes a spatially lagged dependent and 

explanatory variables (Halleck Vega and Elhorst, 2015). 

𝑌 =  𝜌𝑊𝑌 +  𝛼 + 𝑋𝛽 +  𝑊𝑋𝜃 +  𝜀                                                  (5) 

where ρWY is the endogenous interaction effect, α is the constant term, X denotes a matrix of 

exogenous explanatory variables, WXθ represents the exogenous interaction effects and ε is a 

vector of disturbance terms. 

On the topic of the Spatial Autoregressive with additional autoregressive error structure 

(SARAR) model, it is known to incorporate spatial autoregressive and autoregressive terms for 

both the dependent variable and the error term (Okunlola et al., 2021). The specification takes 

the following form: 

𝑌 =  𝜌𝑊𝑌 +  𝛼 +  𝑋𝛽 +  𝑢, with 𝑢 =  𝜆𝑊𝑢 +  𝜀                                    (6) 

where ρWY is the endogenous interaction effect, α is the constant term, X denotes a matrix of 

exogenous explanatory variables, λWu represents the interaction effect among error terms and ε 

is a vector of disturbance terms. 

The spatial weights matrix, which captures the spatial relationships between the geographic 

units, is carefully constructed based on appropriate criteria, such as contiguity, distance, or other 

relevant measures. The weights are standardized to ensure comparability across units, and 

sensitivity analysis is conducted to assess the robustness of the results to different weighting 

schemes. The spatial weights matrix is used in the estimation of SLX, SAR, SDEM, SDM, and 

SARAR models. 

The Queen matrix, also known as the Queen Contiguity matrix, establishes the spatial 

relationships between neighboring areas based on the criterion that two areas are considered 

neighbors if they share a common boundary or a common vertex (corner). In other words, in the 

queen matrix, two areas are considered to be neighbors if they are directly adjacent to each 

other, either through a shared boundary or a shared corner (Anselin and Rey, 2014). 

The endogenous factor, Ecological Footprint was introduced into the model in order to observe 

to what extent existing resources can support human behavior. The Ecological Footprint is a 

method of comparing the sustainability of resource use among populations. It measures the 

effect of human consumption on cultivated land, forest, built-up land and the ocean, along with 

the degree to which these surfaces can support the indefinite existence of human communities 

(Ahmed et al., 2019). Thus, unsustainable populations are those with an ecological footprint 

larger than available land.  
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To analyze the differences and similarities between the two energy categories, a series of 

variables representative of the study were used, which are available for 75 countries, in 2018. 

Also, to investigate the impact on the environment, an additional variable, Number of earths, 

was introduced into the analysis. This represents the number of planets necessary for survival 

conditioned by the fact that the total population of the Globe adopts the same behavior. 

The Number of earths indicator (which is defined in Table 1) was chosen as the dependent 

variable because it offers an element of novelty and is an indicator that is currently of great 

interest to researchers, while also being an important reference point in the transition to 

sustainability. The independent variables chosen include population density, urban population, 

and various energy consumption measures such as natural gas, coal, solar, wind, 

hydroelectricity, geothermal, biomass, and others, covering the main factors regarding the 

energy sector that represented the subject of research interest. 

Table 1. Variables included in analysis 

Variable Description Source 

Number of earths 

Every individual and country’s Ecological Footprint have a 

corresponding planet equivalent, or the number of Earths it 

would take to support humanity’s Footprint if everyone lived 

like that individual or residents of a given country. The ratio 

of a country's per capita footprint to the available per capita 

biological capacity on Earth (“Glossary - Global Footprint 

Network”) 

Global Footprint 

Network 

Greenhouse gases 
Carbon Dioxide (CO2), Methane (CH4), Nitrous Oxide 

(N2O) and Fluorinated Gases (F-Gas) emissions in MtCO2e 
Climate Watch 

KOFGI KOF Globalisation Index 
KOF Swiss Economic 

Institute 

GDP per capita GDP per capita (current US$) World Bank 

Population density Population density (people per km2 of land area) World Bank 

Urban population Urban population (% of total population) World Bank 

Natural gas  Total natural gas consumption (GJ per capita) 
bp Statistical Review 

of World Energy 

Oil  Total oil consumption (GJ per capita) 
bp Statistical Review 

of World Energy 

Coal  Total coal consumption (GJ per capita) 
bp Statistical Review 

of World Energy 

Solar Total solar energy consumption (GJ per capita) 
bp Statistical Review 

of World Energy 

Wind Total wind energy consumption (GJ per capita) 
bp Statistical Review 

of World Energy 

Hydroelectricity Total hydroelectricity consumption (GJ per capita) 
bp Statistical Review 

of World Energy 

Geothermal, 

Biomass and other 

Total geothermal, biomass and other energy consumption (GJ 

per capita) 

bp Statistical Review 

of World Energy 

Source: Created by authors. 
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To obtain conclusive and comprehensive results, we deliberately selected a diverse range of 

countries spanning six continents to include in our analysis. Specifically, our dataset comprised 

of the following countries: 

o North America: Canada, Mexico, and the United States; 

o South America: Argentina, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and 

Tobago; 

o Europe: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, 

Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, 

Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, 

Spain, Sweden, Switzerland, Turkey, Ukraine, and the United Kingdom; 

o Asia: Azerbaijan, Belarus, China, India, Indonesia, Iran, Iraq, Israel, Japan, Kazakhstan, 

Kuwait, Malaysia, Oman, Pakistan, Philippines, Qatar, Russian Federation, Saudi Arabia, 

Singapore, South Korea, Sri Lanka, Thailand, Turkmenistan, United Arab Emirates, 

Uzbekistan, and Vietnam; 

o Africa: Algeria, Egypt and Morocco; 

o Australia: Australia and New Zealand. 

We applied a selection criterion that primarily focused on the availability of data, while also 

considering a broad range of economic, cultural, and geographic factors. This diverse and 

extensive dataset enabled us to capture a comprehensive understanding of the global context and 

yielded robust results.  

A first step in the analysis of variables is to visualize their distributions, in order to notice 

extreme values or erroneous records. The verification of the homogeneity of the variables is 

conducted by the coefficient of variation calculated according to the formula     

𝑣 =
𝑆

�̅�
                                                                    (7) 

where s represents the standard deviation, and �̅� the mean of the values. It is known that a 

coefficient value above 35% signals the absence of homogeneity. The coefficient of variation is 

often favored as a statistical tool because it allows for the comparison of variables without being 

influenced by differences in scale, as it is a dimensionless measure (Brown, 2012). 

To ensure comparability between heterogeneous variables with varying units of measurement, 

standardization becomes essential. One commonly used method is the Z-score, which rescales 

the data values according to the formula 

𝑍 =
𝑥−�̅�

𝑠
                                                                   (8) 

The utilization of the Z-score enables the standardization of parameter ranges, facilitating 

meaningful comparisons and harmonizing their scales. This statistical procedure is typically 

considered a necessary preliminary step prior to conducting Principal Component Analysis 

known also as PCA (Jang et al., 2018). 

Findings 

The majority of the studied variables were found to be heterogeneous, except for the KOF 

Globalisation Index and urban population, which exhibited coefficient of variation values of 

approximately 0.16 and 0.24, respectively. Additionally, the distributions of the researched 

variables demonstrated non-normality, with outliers present and different units of measurement. 

Therefore, to ensure comparability, the Z-score method was employed to standardize the 

variables. To determine if Principal Component Analysis (PCA) was a suitable technique for the 

study, the correlation matrix was analyzed (Figure 1). 
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Fig. 1. Correlation matrix 

Source:  Created by authors using Python. 

Several variables exhibited strong positive correlations, such as oil consumption and population 

density (0.75), and the KOF Globalisation Index and GDP per capita (0.66). Hence, it was 

concluded that the application of PCA was effective in identifying new synthetic variables. 

After analyzing the eigenvalue matrix (Table 2), it is advised to retain four principal 

components, as eigenvalues greater than or equal to 1 are usually selected. The first component 

appears to replace approximately 4 variables and explains 29.37% of the total variance, while 

the second component appears to replace about 2 variables and accounts for 17.84% of the 

variance. The third and fourth components explain around 8% of the variance each, with each 

component possibly reflecting a single variable, which raises concerns about their 

interpretability and usefulness in practice. However, the scree plot (Figure 2) suggests keeping 

only three principal components, as they account for a total of 58.56% of the variance and retain 

a significant portion of the initial information (Samuels, 2017). Therefore, we will proceed with 

further analysis using these three components.                

 Table 2. Matrix of eigenvalues 

 
Eigenvalue Proportion 

Cumulative 

Proportion 

1 3.5250 0.2937 0.2937 

2 2.1429 0.1786 0.4723 

3 1.3581 0.1132 0.5855 

4 1.0498 0.0875 0.6730 

5 0.9723 0.0810 0.7540 

6 0.7972 0.0664 0.8204 

Source: Created by authors using Python                   

                                                                                                 Fig 2.  Scree Plot 

Source: Created by authors using Python. 

The results presented in Table 3 indicate that the first principal component is positively 

influenced by greenhouse gas emissions, the KOF Globalisation Index, and energy consumption 
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from wind, geothermal and biomass sources, with coefficients having average values. Similarly, 

the second principal component is positively influenced by GDP per capita, the percentage of 

urban population, and consumption of hydroelectricity, but negatively influenced by coal 

consumption, with coefficients also having average values. Finally, the third principal 

component is positively influenced by population density, as well as oil and solar energy 

consumption. 

Table 3. Eigenvectors and structure of principal components 

Eigenvectors Factor Pattern 

  PC1 PC2 PC3 Factor1 Factor2 Factor3 

Pop_sqft 0.122445 0.458014 0.210691 0.122445 . 0.467398 

GreenHouse_G -0.04191 -0.11686 0.509307 0.458014 -0.11686 . 

GDP 0.467398 0.093149 -0.09097 0.210691 0.509307 . 

KOFGI 0.443228 -0.14615 0.001221 0.599821 -0.16964 -0.10684 

Urban_pop 0.365796 0.188758 0.016472 . 0.657103 0.136259 

Natural_gas 0.046251 0.407292 -0.03802 . -0.43558 . 

Coal 0.11154 -0.27967 0.518171 . -0.12757 0.236523 

Oil 0.288154 0.527899 0.135283 . -0.11944 -0.10423 

Solar 0.299232 -0.17491 0.363993 0.146719 -0.19524 . 

Wind 0.35767 -0.28249 -0.16047 -0.29547 . 0.742359 

Hydro 0.156796 -0.08598 -0.47279 -0.49436 . -0.32527 

Geothermal_Biomass 0.308004 -0.26521 -0.13282 0.122445 . 0.467398 

Source: Created by authors using Python. 

The absolute values of the coefficients for the three principal components are mostly within the 

range of 0.1 to 0.5, making it difficult to identify which variables contribute significantly to the 

creation of the components. To improve interpretability, an axis system rotation will be 

conducted (Table 4) using the Varimax orthogonal rotation method. Since the three components 

exhibit average correlations, this method will help simplify the relationships between the 

original variables and the new components. 

Table 4. Rotated factors pattern 

 Factor1 Factor2 Factor3 

Pop_sqkm . 0.742842 . 

GreenHouse_G . . 0.611458 

GDP 0.773939 0.440558 . 

KOFGI 0.842016 . . 

Urban_pop 0.528429 0.518701  . 

Natural_gas . 0.558384 . 

Coal . . 0.701004 

Oil . 0.936562 . 

Solar 0.542596 . 0.510167 

Wind 0.795966 . . 

Hydro 0.402269 . -0.480229 

Geothermal_Biomass 0.696069  . . 

Note: Lower values than 0.4 are not shown 

Source: Created by authors using Python. 
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The analysis revealed that the first factor, named Green Economic Development, is primarily 

determined by GDP per capita, KOF Globalisation Index, and energy consumption from solar, 

wind, geothermal, and biomass sources. The second factor, referred to as Unsustainable 

Urbanization, is mainly determined by population density, urban population percentage, natural 

gas, and oil consumption. The third factor, named Polluting Fossil Fuels, is primarily 

determined by greenhouse gases emissions and coal consumption. 

To facilitate the interpretation of the results, a scatterplot (Figure 3) was created to visualize the 

relationship between the Green Economic Development and Unsustainable Urbanization 

factors. The 75 countries included in the analysis were color-coded based on their Polluting 

Fossil Fuels factor values.  

After performing the Varimax orthogonal axis rotation, some outliers were observed in the 

dataset. Notably, Singapore and Qatar were identified as having high values for demographics 

and non-renewable energy consumption but comparatively low or moderate greenhouse gas 

emissions. The high population density of Singapore could be a contributing factor to its energy 

consumption patterns. `Our observation that Qatar exhibits high values for energy consumption 

and moderate greenhouse gas emissions is in line with the findings of Conde (2014), who notes 

that Qatar is one of the largest oil-producing countries with high levels of energy consumption 

per capita and CO2 emissions per Km2. 

In contrast, Denmark, Sweden, Finland, and Norway emerged as developed countries with high 

consumption of renewable energy sources and low greenhouse gas emissions, which aligns with 

their economic and globalization aspects. This highlights the significance of policy decisions 

and investment in renewable energy sources in mitigating greenhouse gas emissions. These 

findings align with those of Irandoust (2016), who suggests in his paper that the Nordic 

countries exhibit low energy intensities and high energy efficiencies. Furthermore, China, a 

high-tech user country, was not an outlier concerning the first two synthetic variables, but it had 

notably high greenhouse gas emissions, which were highlighted in red in the scatterplot. This 

observation could be due to China's status as a major producer and consumer of energy, as well 

as its reliance on coal and other polluting fossil fuels. 



 Exploring the Spatial Patterns of Ecological Footprints from the Perspective of Renewable and … 87 

 

 
Fig 3. Factor Scores (95% Prediction Ellipse) 

Source: Created by authors using Python 

The spatial distribution of the ecological footprint in Figure 4 reveals that smaller, less 

economically developed countries with low population and surface area generally have a 

smaller ecological footprint (color-coded in blue), except for outliers Qatar and Luxembourg 

with ecological footprints equivalent to approximately 9 and 8 earths, respectively. In contrast, 

larger and more economically developed countries such as Canada, the United States, and 

Russia exhibit a larger ecological footprint, denoted by shades of red. This pattern is also 

observed in the Nordic countries previously mentioned. These findings suggest that as a country 

becomes more developed, its natural resource consumption increases, resulting in greater 

environmental pollution. Additionally, the clustering of neighboring countries based on their 

ecological footprint may indicate the influence of geographic proximity on natural resource 

consumption. 
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Fig 4. Spatial distribution of ecological footprint  

Source: Created by authors in Tableau. 

To investigate the potential presence of spatial clustering in a dataset, a diagnostic check was 

performed using OLS regression. Moran's I coefficient was then applied to the residuals 

obtained from the fitted OLS regression. The Moran's I coefficient’s positive value suggested 

that neighboring countries had similar environmental approaches and that spatial autocorrelation 

was present in the dataset. This finding implies that environmental policies and resource 

consumption patterns may be influenced by geographic proximity, highlighting the importance 

of considering spatial effects in modeling and analysis. 

The study utilizes six spatial regression models evaluated through AIC information criterion to 

examine the dynamic effects of renewable and non-renewable energy consumption, greenhouse 

gas emissions, economic growth, and demographic indicators on ecological footprint (Table 5). 

The models included spatial lagged X (SLX), spatial autoregressive (SAR), spatial error (SEM), 

spatial Durbin error (SDEM), spatial Durbin (SDM) and spatial Autoregressive with additional 

autoregressive error structure (SARAR). 

Table 5. Informational Criteria – Spatial Models 

Independent 

variables 
SLX SAR SEM SDEM SDM SARAR 

Green_Economic_ 

Development  

1.014092 

*** 

0.746223 

*** 

0.843530 

*** 

1.004983 

*** 

1.00164316

*** 

0.669468 

*** 

Unsustainable_ 

Urbanization  

0.621337 

*** 

0.752864 

*** 

0.744796 

*** 

0.646153 

*** 

0.62580231

*** 

0.741486*

** 

Polluting_Fossil_ 

Fuels 
-0.002913 

-

0.018593 
-0.014219 -0.013671 -0.00089975 -0.033199 

Lag.Green_Econo

mic_Development  
-0.265065   -0.255574 

0.50359847 

* 
 

Lag.Unsustainable

_Urbanization 

0.635096 

** 
  

0.618842 

** 

0.618842 

** 
 

Lag.Polluting_ 

Fossil_Fuels 
-0.228975   -0.247353 -0.24100951  

Model selection criteria 

AIC 241.15 243.15 243.86 242.43 242.18 244.96 

* p < 0.10, ** p < 0.05, *** p < 0.01 

Source: Created by authors using R Studio. 
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Upon analyzing the results, it was observed that the SLX and SDEM models had similar 

estimates in terms of sign and significance. However, they differed from the SDM estimates in 

terms of significance. Additionally, the coefficients for the Green Economic Development 

factor were smaller in the SAR, SEM, and SARAR models, while the coefficients for the 

Unsustainable Urbanization factor were higher in these models compared to the three previously 

mentioned models. Based on the AIC criteria, the SLX model was found to be the most suitable 

for the dataset. 

After applying the Spatial Lagged X model (Table 6), it was found that the variables that 

significantly impact the ecological footprint are the Green Economic Development factor, as 

well as the Unsustainable Urbanization factor and its spatial lag. However, the Polluting Fossil 

Fuels factor did not show any significant impact. The analysis of the regression model suggests 

that the Green Economic Development factor, which is affected by factors such as GDP per 

capita, KOF Globalisation Index, and the use of solar, wind, geothermal, and biomass energy, 

has a positive influence on the ecological footprint. Likewise, the Unsustainable Urbanization 

factor, which is influenced by factors such as population density, percentage of urban 

population, and consumption of natural gas and oil, also contributes to an increase in the 

ecological footprint. 

Table 6. SLX model estimates 

 Estimate Std. Error t value Pr(>|t|) 

Intercept 2.846196    0.137686   20.672    < 2e-16 *** 

Green_Economic_Development       1.014092    0.262806    3.859   0.000256 *** 

Unsustainable_Urbanization       0.621337    0.142577    4.358  0.0000455 *** 

Polluting_Fossil_Fuels         -0.002913    0.140182   -0.021   0.983480     

lag.Green_Economic_Development  -0.265065    0.320401   -0.827   0.410965 

lag.Unsustainable_Urbanization   0.635096    0.279633    2.271   0.026306 * 

lag.Polluting_Fossil_Fuels      -0.228975    0.162940   -1.405   0.164493 

* p < 0.10, ** p < 0.05, *** p < 0.01 

Source: Created by authors using R Studio. 

The spatial dependency analysis (Table 7) indicates that the Green Economic Development 

factor has a significant impact on the number of earths only through its direct effect, indicating 

that a country's own policies and actions towards economic growth and use of modern energy 

sources influence its ecological footprint. In contrast, the Unsustainable Urbanization factor has 

both direct and indirect impacts on the ecological footprint, suggesting that a country's 

ecological footprint is affected by both its own demographic patterns and consumption of 

traditional energy sources as well as those of its neighboring countries. Specifically, an increase 

of one unit in the Green Economic Development factor leads to a corresponding increase of 1.01 

units in the ecological footprint, while an increase of one unit in the Unsustainable Urbanization 

factor results in a 0.62-unit increase in the ecological footprint. Additionally, the significant 

coefficient of the lagged factor highlights that a one-unit increase in a country's neighbors' 

consumption of non-renewable energy leads to a 0.64-unit increase in its own ecological 

footprint. 

Table 7. SLX impact measures 

 Direct Indirect Total 

Green_Economic_Development 1.014091833 -0.2650655 0.7490263 

Unsustainable_Urbanization 0.621336728 0.6350957 1.2564325 

Polluting_Fossil_Fuels -0.002913243 -0.2289745 -0.2318878 

p-values 

Green_Economic_Development 0.00011399 0.408071 0.0000032347 

Unsustainable_Urbanization 0.000013132 0.023136 0.0000019944 

Polluting_Fossil_Fuels 0.98341963 0.159941 0.22167 

Source: Created by authors using R Studio 
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Similar to our results, according to Rüstemoğlu's (2022) study on the drivers of CO2 emissions 

and ecological footprint growth in Australia, CO2 emissions were not found to have a significant 

impact on ecological footprint. Instead, population and real income were more dominant factors 

in changes of ecological footprint. The study highlights the importance of considering multiple 

factors in analyzing environmental degradation and suggests the need for further research to 

explore the complex relationships between ecological footprint, CO2 emissions, and their 

determinants. The study conducted by Alola et al. (2019) on European countries concludes that 

the adoption of renewable energy sources has a significant positive effect on environmental 

quality. The study estimates that in the long run, a 1% increase in the proportion of renewable 

energy in total energy consumption leads to approximately a 0.04% increase in environmental 

deterioration. The study by Pata et al. (2021) highlights the importance of researching China's 

pollution levels, as they have significant implications for the country's economy and the global 

environment. The findings suggest that relying solely on increasing the use of renewable energy 

sources may not be sufficient to improve environmental quality as long as the consumption of 

fossil fuels continues to rise. Additionally, the empirical study conducted by Amin (2016), 

which investigates a sample of 48 sub-Saharan countries over the 1990-2009 period using the 

SLX model, also suggests that countries are influenced by their contiguous neighbors in 

environmental policymaking. Similarly, Zambrano-Monserrate et al. (2020) explore the factors 

that determine the Ecological Footprint of 158 countries over the period of 2007-2016, taking 

into account the influence of neighboring countries. Using a dynamic spatial Durbin model, the 

researchers analyze the direct, indirect, and total effects of biocapacity, trade openness, and 

GDP on the Ecological Footprint in the short- and long-term. The findings indicate that 

biocapacity, trade openness, and GDP are all positively associated with the Ecological 

Footprint, but with varying degrees of direct and indirect effects. 

Contrary to our findings, a study by Huang et al. (2022), which analyzes panel data from 1995 

to 2018 in E-7 and G-7 countries, shows that renewable energy use can indeed help preserve 

environmental quality in both panels by reducing the ecological footprint. However, the 

magnitude of the coefficient differs between the two panels. The study recommends that 

countries should adopt strategies that promote innovative resolution-based renewable and green 

energy technologies to reduce their ecological footprint. 

Conclusions 

This study provides a comprehensive analysis of the impact of renewable energy consumption 

compared to conventional energy use on a country's ecological footprint. The research identifies 

three new variables that highlight the relationship between energy consumption, globalization, 

urbanization, economic development, and their impact on the environment. The study finds that 

high population density countries may have greater energy consumption needs, while Nordic 

countries have high consumption of renewable energy sources and low greenhouse gas 

emissions. However, countries relying on non-renewable energy sources produce significantly 

more greenhouse gas emissions than those using modern sources. 

The spatial patterns analysis shows that the Green Economic Development and Unsustainable 

Urbanization factors have a significant impact on a country's ecological footprint. An increase 

in the Green Economic Development factor leads to a corresponding increase in the ecological 

footprint, suggesting a possible excessive use of natural resources in countries with rapid 

economic development. The Unsustainable Urbanization factor also contributes to an increase in 

the ecological footprint, indicating that population density and consumption of traditional 

energy sources are important factors to consider in addressing environmental degradation. 

The analysis of spatial dependency highlights the importance of considering a country's 

neighbors' policies and actions in addition to its own. This highlights the need for regional and 
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global cooperation in addressing environmental challenges and achieving sustainable 

development goals. 

Overall, the study's findings can inform policy decisions and actions aimed at promoting 

sustainable development and reducing environmental degradation. The study suggests that 

countries with high population density and substantial urban populations should reduce their 

consumption of non-renewables while incorporating sustainable energy on a larger scale to 

ensure a more environmentally friendly future. Additionally, developed nations should invest in 

adopting more efficient, modern, and resource-efficient energy technologies in order to achieve 

a more sustainable environment.  

Transitioning from non-renewable to renewable energy sources offers a multitude of potential 

benefits, fundamentally reshaping the utilization of natural resources. Unlike their conventional 

passive role, natural resources acquire an active purpose through energy production, promoting 

sustainability. This shift can help mitigate ecological footprints and reduce environmental 

degradation, largely due to the lower emissions associated with renewable energy generation. 

The renewable nature of these sources further magnifies their positive impact, as they are not 

depleted over time like non-renewables. By harnessing energy from sources such as wind, solar, 

hydrological and geothermal, communities can not only meet their energy needs but also 

contribute to the restoration and preservation of natural ecosystems. 

Additionally, transitioning to renewable energy sources contributes to the diversification of 

energy supply. Reducing reliance on imported fossil fuels enhances energy security and reduces 

vulnerability to international fuel market fluctuations. This can positively impact economic 

stability and national security. The renewable energy transition is not just a technological 

advancement but also aligns with a forward-looking approach that values long-term 

sustainability over short-term gains. Adopting renewable energy sources at a global scale is a 

transformative approach that holds the potential to reshape the energy landscape, enhance global 

sustainability efforts, and create a more secure and resilient future.  

Renewable energy stands as the most cost-effective global energy option. Renewable 

technology prices are plummeting; solar costs decreased by 85% from 2010 to 2020, while 

onshore and offshore wind expenses dropped by 56% and 48%, respectively. This price decline 

heightens the appeal of renewables overall, particularly for low- and middle-income countries 

witnessing a surge in electricity demand. The prospect of substantial low-carbon energy 

production emerges, decarbonizing 90% of the energy sector by 2050, significantly mitigating 

climate change. This perspective draws from the core diagnostic report titled "Country Climate 

and Development Report (2023)", developed by the World Bank. 

Alongside the implementation of the green economy, improvements extend to the health sector. 

The World Health Organization (WHO) reports that almost all of the global population breathes 

polluted air, attributing millions of yearly deaths to preventable environmental factors, like air 

pollution. The burning of fossil fuels predominantly generates detrimental pollutants. In 2018, 

fossil fuel-related air pollution incurred billions in economic and health expenses. Embracing 

clean energy sources such as solar and wind concurrently addresses climate change while 

enhancing air quality and public health. 

However, the study acknowledges several limitations. Future research should consider more 

countries over a longer period, along with regional variations and the influence of political and 

cultural factors. Additionally, technological advancements and innovations should also be taken 

into account in future research. Two other notable limitations of the study are the temporal 

constraint of using data exclusively from 2018, which may impact the generalizability of the 

findings, and the potential lack of significant novelty in the research outcomes, which may limit 

the originality and innovation of the study. 
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