
 Economic Insights – Trends and Challenges Vol. 12
No.1

2023 95 - 103

Adaptive Microservices for Dynamic E-commerce: Enabling
Personalized Experiences through Machine Learning and

Real-time Adaptation

Gabriela Dobrița (Ene)

Bucharest University of Economic Studies, 6 Piata Romana, 1st District, Bucharest, Romania

 https://orcid.org/0000-0002-5992-334X
 e-mail: gabriela.ene02@gmail.com

Original research paper

Citation:

Dobrița, G. (2023). Adaptive Microservices for

Dynamic E-commerce: Enabling Personalized

Experiences through Machine Learning and

Real-time Adaptation. Economic Insights –

Trends and Challenges, 12(1), 95-103.

https://doi.org/10.51865/EITC.2023.01.08

Copyright: © 2023 by the authors

Abstract: In the rapidly evolving landscape of e-commerce, the need for
personalized experiences and real-time adaptation has become paramount.
This article proposes a framework for adaptive microservices in the e-
commerce domain, leveraging machine learning techniques and real-time
adaptation to enhance user experiences and drive business growth. The
framework suggests implementing each e-commerce activity as an
independent microservice, enabling modular development, scalability, and
flexibility. Key microservices such as product catalog management,
shopping cart management, order processing, and user management are
identified and integrated into an architecture that fosters seamless
communication and data exchange. To enable self-adaptation and
personalization, a Monitor-Analyze-Plan-Execute (MAPE) loop is
introduced. The monitoring phase involves integrating additional services to
collect relevant data, including user interactions, search keywords, session
data, and feedback. This data is leveraged in the analysis phase, where
machine learning techniques are employed to preprocess and extract
meaningful insights. Cosine similarity is utilized to calculate similarity
scores between user preferences and available products, enabling the
generation of personalized recommendations. The proposed approach
focuses on connecting the product management microservice to a self-
adaptive mechanism, ensuring that the existing infrastructure remains
largely untouched. This enables companies to enhance their e-commerce
platforms without undergoing significant overhauls or disruptions. Another
advantage lies in the flexibility and scalability offered by the modular
microservices architecture. Companies can selectively integrate the self-
adaptive mechanism into the product management microservice,
maintaining the autonomy and independence of other microservices. This
flexibility facilitates scalability as businesses expand and encounter growing
demands.

JEL Classification:
O32;O25; L10;

Keywords: Self-adaptive Recommendation System; Dynamic E-commerce;
Microservices

96 Gabriela Dobrița (Ene)

Introduction

In recent decades, e-commerce platforms have undergone significant transformations driven by
advancements in technology, in-depth studies on consumer behavior, and the evolving demands
of expanding businesses. Numerous e-commerce platforms have incorporated dedicated mobile
applications, thereby facilitating rapid and streamlined product purchases for buyers. Moreover,
personalized purchasing experiences have been seamlessly integrated, with marketing
campaigns increasingly including tailored targeting strategies based on meticulous customer
data analysis, integrating browsing history, preferences, and duration of product interactions.

Consequently, the data volume has surged, necessitating the adoption of sophisticated
processing algorithms to profoundly improve the shopping experience and, by extension,
streamline business operations. Noteworthy examples include recommendation systems,
customer support chatbots, fraud detection mechanisms, inventory management systems,
dynamic pricing algorithms, topic modeling techniques for discerning sentiment from customer
reviews, and predictive analytics for anticipating demand patterns on specific products. Taken
together, these use-cases highlight the extensive usage of machine learning algorithms and
artificial intelligence frameworks in the creation and enhancement of modern e-commerce
platforms.

Traditional monolithic architectures have exhibited constraints in scalability, displaying rigidity
in adapting to decision-making processes and the integration of emerging technologies. By
definition, a monolithic approach to an e-commerce platform entails its development as a
cohesive entity, wherein all constituent components are consolidated within a singular codebase,
sharing a unified database and infrastructure. The interconnected nature of these components
renders the platform susceptible to the propagation of errors, whereby a fault occurring within a
specific domain has the potential to reverberate throughout the entirety of the system, thereby
introducing amplified risks and augmenting the expenditures associated with development and
rigorous testing.

In contrast to the monolithic architecture paradigm, microservices have emerged as a highly
favored approach in recent years. The microservices architecture provides resilience, scalability,
and flexibility, effectively addressing the inherent limitations of monolithic architectures. The
implementation methodology revolves around the partitioning of the application into smaller,
self-contained entities, tailored to specific business activities or business domains. These
discrete entities can be independently deployed, scaled, and developed. The cohesion among
them is maintained through robust communication mechanisms such as REST APIs, event-
driven systems, or messaging frameworks. Each microservice operates as an autonomous entity,
with its own dedicated database. Any errors that may arise within one microservice remain
confined, isolated from the operational integrity of other components, thereby minimizing risks
and mitigating costs (Raj & Sadam, 2021). This architectural integrates very well with the
DevOps culture (Waseem et al., 2020) and agile methodologies, facilitating accelerated
development cycles and advanced testing capabilities.

Even with the incorporation of all these facets, navigating through vast datasets can prove to be
a big challenge. The integration of product recommendation systems has become an almost
indispensable requirement for customer retention and the augmentation of user engagement.
These systems meticulously analyze vast datasets that include browsing histories, product
views, time spent within specific sections of the website, as well as user preferences and
interests. However, to truly enhance the efficacy and quality of services provided by an online
shop, the integration of a self-adaptive recommendation system becomes imperative. This
adaptive mechanism considers the fluidity of user preferences, the availability of stock, the
integration of new products in the business line, the dynamic pricing landscape and even system
restrictions. By continuously adapting to these ever-evolving factors, the self-adaptive

 Adaptive Microservices for Dynamic E-commerce: Enabling Personalized Experiences through … 97

recommendation system ensures the delivery of pertinent, tailored recommendations that align
precisely with users' evolving needs and desires, culminating in an elevated user experience.

Literature Review

In (Mendonca et al., 2021) a self-adaptive system is defined as a system that can dynamically
monitor and adapt its behavior to preserve and enhance its quality attributes in uncertain
operating conditions. The variations of self-adaptation are provided to a system by adding an
additional layer that analyzes data regarding the effects of its actions, determines whether they
exceed or remain within predefined constraints, and implements a set of modifications to restore
the system's state or manage its behavior in a controlled manner. This additional layer simply
entails running checks within the loop over the entire system (Seo et al., 2018). The MAPE
(Monitor-Analyze-Plan-Execute) loops (Kephart & Chess, 2003) represent a common model
used in self-adaptive systems. They enable the system to continuously monitor its state, analyze
collected data, plan, and execute adaptation actions based on the analysis results. Monitoring
involves gathering real-time information about the system, such as performance metrics,
resource status, or user feedback. These data are analyzed in the analysis stage to identify
anomalies, trends, or issues that require adaptation. In the planning stage, the system utilizes the
analyzed information to develop strategies and adaptation actions. Here, decisions are made
regarding the changes needed to improve performance and meet quality objectives. The
execution stage involves implementing the planned actions to adjust the system accordingly.
These actions may include resource scaling, parameter adjustments, or configuration changes,
for example.

The MAPE loops operate in an iterative manner, where the system continuously adapts as it
receives and processes new monitoring data. This model allows systems to react in real-time to
environmental changes and fluctuating requirements, ensuring performance and reliability in
uncertain conditions. Although architecture-based self-adaptation is appealing in theory, it
cannot be always easily applied. One challenge is devising solutions that can effectively handle
a wide range of systems with diverse characteristics. Additionally, there is a pressing need to
explore approaches that minimize the costs associated with integrating external control
mechanisms into a system. In (Garlan et al., 2004) those problems were addressed, and the
Rainbow framework was introduced. The RAINBOW framework provides a comprehensive
approach to designing and implementing adaptive systems. It consists of six key components:

o Reconfiguration: The ability to dynamically modify the system's structure, behavior, and
configuration based on changing environmental conditions or goals.

o Architectural model: A formal representation of the system's architecture that captures its
components, connectors, and their relationships, enabling analysis and reasoning about
system behavior.

o Implementation: The actual realization of the system's components and connectors,
incorporating mechanisms for monitoring, analyzing, and executing adaptations.

o Negotiation: The process of making decisions about system adaptations based on multiple
stakeholders' requirements, goals, and constraints, considering trade-offs and conflicts.

o Observation: Continuous monitoring and collection of data about the system's internal and
external states, including performance metrics, environmental conditions, and user
feedback.

o Workbench: A set of tools and techniques that support the development, deployment, and
management of self-adaptive systems, including simulation, analysis, and testing
capabilities.

In (Cheng et al., 2009) authors outline the requirements for a benchmark environment to enable
effective comparisons of the Rainbow framework with other self-adaptive techniques and assess

98 Gabriela Dobrița (Ene)

how well Znn.com meets those requirements, concluding that the rainbow framework proved to
provide fast and efficient integration results. In the context of Znn.com, when the response time
exceeds a certain threshold, the Rainbow self-adaptive system can take specific actions to
improve performance.

Regarding adaptive recommendation systems, few studies describe their integration. In (Huang
et al., 2018), a framework is proposed for recommendation suggestions and predicting user
behavior in a library context. The framework consists of online and offline components. The
online components involve data collection, preprocessing, and data mining. They generate
recommendations by analyzing predefined rules by enabling adaptive online recommendation
services. The study utilizes the university library as an example, employing the sliding window
method, association rule algorithms, and recommendation set generation algorithms. The results
demonstrate the effectiveness and feasibility of the proposed method through theoretical
analysis and experimentation. In (Sunny et al., 2017), the implementation of a real-time
recommendation of TV channels to viewers in real-time system using Apache Spark is
described. Similar scenarios are treated and described in (Bui et al., 2022; H. Wan & Yu, 2020;

S. Wan & Niu, 2020).

Auto adaptive microservices have the advantage of managing behavior in such a way that they
can handle dynamic situations and dynamically allocate resources considering changing
operating conditions. The development of such mechanisms also enables the dynamic
adjustment of microservices configurations, the adoption of various scaling options, responses
provided by the system and the variations of communication between them. In terms of
implementation methodology, in (Oreizy et al., 1999), a set of questions is proposed that
developers must consider when defining such a system. These questions are presented in the
table below (Table 1), along with corresponding answers, aimed at developing a framework of
methods and functionalities to enhance the service that handles products through automatic self-
adaptation of the recommended product set and dynamic pricing based on specific product
demand.

Table 1. Design guidelines for a self-adaptive microservice in the context of an e-commerce website

Question Answer

Under what conditions
does the system undergo
adaptation?

The system undergoes adaptation when there is a need to enhance the functionality of
the product catalog microservice with product recommendations and dynamic pricing.
These conditions should be defined under the business goals, considering changes in
user behavior or market trends.

Should the system be
open-adaptive or closed-
adaptive?

The system should be open-adaptive, allowing for the introduction of new product
recommendation algorithms, pricing strategies, and adaptation plans during runtime.

What type of autonomy
must be supported?

The system must support a range of autonomy levels, from fully automatic adaptation
where the microservice independently adjusts the product recommendations and
pricing, to human-in-the-loop adaptation.

Under what
circumstances is
adaptation cost-effective?

Adaptation is considered cost-effective when the benefits gained from improved
product recommendations and dynamic pricing outweigh the costs associated with
implementing and maintaining the adaptation mechanisms.

How often is adaptation
considered?

Adaptation should be considered based on the specific needs and requirements of the e-
commerce system. It can be implemented with policies ranging from continuous
adaptation, where real-time user interactions and market changes trigger immediate
adjustments, to periodic adaptation, where adaptation is performed at regular intervals
based on predefined schedules or business cycles.

What kind of information
must be collected to make
adaptation decisions?
How accurate and
current must the
information be?

The system needs to collect relevant information such as user preferences, browsing
history, purchase patterns, market trends, and competitor analysis. The accuracy and
currency of this information should be as up-to-date as possible to ensure accurate
analysis and decision-making. Real-time data integration and monitoring mechanisms
can be employed to gather the most recent information for adaptation.

Source: Made by author.

 Adaptive Microservices for Dynamic E-commerce: Enabling Personalized Experiences through … 99

Proposed Methodology

Each activity required in an e-commerce system can be implemented as a microservice, as an
independent service that handles a specific functionality of the ecommerce platform. The
product catalog microservice can be responsible for managing and storing information about the
available products, including their attributes, pricing, and inventory. The shopping cart
microservice can handle the management of customers' selected items and their quantities,
allowing users to add, remove, and update products in their cart. Another microservice could be
the order management microservice, which handles the processing of customer orders, including
order validation, payment processing, and order fulfillment. The user management microservice
can handle user authentication, registration, and account management, ensuring secure access to
the platform for both customers and administrators. Each of these microservices can be
developed and deployed independently, allowing for easy scalability, modular development, and
flexibility in adapting to changing business needs. The microservices can communicate with
each other through APIs or messaging protocols to enable data exchange within the ecommerce
platform.

An example of such an architecture for an e-commerce platform is presented in Figure 1.

Fig. 1. Microservices architecture for e-commerce platform

Source: Made by author.

To improve and add self-adaptation to the product management microservice, we propose
integrating a MAPE loop into the above architecture, as depicted in Figure 2.

100 Gabriela Dobrița (Ene)

Fig. 2. Monitor-Analyze-Plan-Execute loop interaction with the product management service.

Source: Made by author.

In the monitoring phase, the goal is to integrate additional services under a plug-and-play
system for collecting data relevant for the product management service. The following steps
were followed for collecting relevant data while minimizing the impact on the platform's
codebase and core architecture. Used data sources include server log files from where
information about user interactions, search keywords, accessed pages, and session data were
extracted. Additionally, tracking code can be injected into JavaScript scripts. Google Analytics
provides a convenient mechanism for integration, but customizable solutions can also be built.
Furthermore, an event tracking system can be integrated with other services. In this case,
various events are considered, such as adding products to the cart, completing orders, or adding
product reviews. Questionnaires with relevant questions can be included within or outside the
platform to directly collect data on user preferences. Additionally, the classic A/B testing
method can generate relevant data by presenting different versions of product presentation pages
or pricing variants.

In the analysis phase, the collected data will be preprocessed to prepare it for building the
recommendation model. Specifically, the similarity score will be calculated between the
attributes related to the names and descriptions of the preferred products and the products added
to the cart with the other similar attributes of products in the product catalog database. The
textual data was cleaned by removing special characters, converting to lowercase, and handling
stop words and, also, textual data was encoded into numerical representations, such as using TF-
IDF. Feature vectors were constructed for the preferred products and the products in the catalog
using their encoded representations and cosine similarity was used in order to calculate the
similarity scores between the feature vectors. The higher the similarity score, the more similar
the products are. The products were ranked based on their similarity scores and the first five
were selected and returned as possible recommendations for the user. The entire approach is
presented in Figure 3.

During the planning phase, different constraints were identified in which the recommendation
system should be triggered, and the recommended products should be displayed to the user.
These conditions were translated into events that triggered the dynamic adaptation of the
product lists, such as adding or removing products from the database, as well as modifying the
data related to these products. Other events included new user registrations, the start of
promotions, and feedback provided by each user (product reviews, ratings, changes in searched
product categories through accessed keywords). These events can be monitored using various
mechanisms. Database Triggers can be used to detect events such as adding or removing
products, modifying product data, or new user registrations. These triggers can be set up to
execute certain actions or notify the system when specific changes occur for notifying the
service in charge for data collection that needs to be provided for the recommendation system
for the products to be correctly returned. Also, the recommendation system can be configured
for webhook notifications from the product service and trigger the appropriate actions in
response. If the e-commerce platform integrated with real-time data streams, stream processing

 Adaptive Microservices for Dynamic E-commerce: Enabling Personalized Experiences through … 101

frameworks or technologies like Apache Kafka, Apache Flink, or Apache Spark can be used to
analyze the stream and detect events based on predefined rules or patterns.

Fig. 3. Simple recommendation model using cosine similarity.

Source: Made by author.

Results and simulations
To measure the impact of adding the self-adaptation loop to the product management service, a
series of scenarios were designed for a test environment with 10.000 products for which the
response time was tracked. The description of the scenarios is as follows:

Single User: Measure the response time when a single user requests recommendations. The
response time of the recommendation system was tested for a user with a small purchase history
compared to a user with a large purchase history.

Concurrent Users: Simulate a scenario where multiple users are simultaneously requesting
recommendations.

Peak Load: We also wanted to record the response time during peak usage periods when the
system experiences high traffic.

Cold Start: Evaluate how quickly the system can generate relevant recommendations for users
with minimal information.

Catalog Update: By making changes to the product catalog, such as adding new items or
updating existing ones, the response time was tracked.

The results are presented in Table 2. The baseline response time refers to the average response
time without the integration of the self-adaptive recommendation system.

102 Gabriela Dobrița (Ene)

Table 2. Response time comparison for different test scenarios

Test Scenario No. Of Users Average Response Time (ms) over baseline
Single User 1 100
Concurrent Users 10 360
Peak Load 20 420
Cold Start 1 180
Catalog Update 1 215

Source: Made by author.

The response time measurements indicate the self-adaptation loop does not introduce delays
during system startup, or when the product catalog is updated. However, when concurrent users
access the recommendation system the waiting time increases, because it handles data in an
iterative manner. However, synchronous requests can significantly improve response time in the
context of the described system. By utilizing asynchronous processing, the system can handle
multiple requests concurrently, reducing overall response time and improving scalability.
Additionally, the preprocessing steps involved in data preparation can be optimized to further
enhance response time. Techniques such as parallel processing, distributed computing, or
optimized algorithms can be employed to expedite data preprocessing and reduce the time
required for feature extraction, encoding, and similarity calculations. Furthermore, using
caching mechanisms can help improve response time for recurring requests. By storing and
retrieving precomputed results or frequently accessed data, the system can avoid redundant
calculations and serve responses more quickly.

Conclusions

This article proposes the implementation of an adaptive microservices architecture for dynamic
e-commerce platforms. The microservices architecture allows for the modular development and
scalability of the system, with each microservice handling specific functionalities such as
product catalog management, shopping cart management, order processing, and user
management. To enhance the product management microservice, a MAPE (Monitor-Analyze-
Plan-Execute) loop was integrated into the architecture. This loop enables self-adaptation by
monitoring relevant data, analyzing it, planning appropriate actions, and executing those
actions. By leveraging machine learning and real-time adaptation, the recommendation system
can provide personalized product recommendations to each user. This enhances the user
experience by presenting relevant and tailored suggestions based on their preferences, browsing
behavior, and feedback. Personalization increases user engagement, satisfaction, and the
likelihood of making a purchase. It also increases cross-selling and up-selling opportunities. The
self-adaptive recommendation system can be easily integrated into the existing architecture,
providing flexibility to adapt and evolve as business needs change.

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitization,
CNCS-UEFISCDI, project number PN-III-P4-PCE-2021-0334, within PNCDI III.

References

1. Bui, S., Kettinger, W. J., & Park, I. (2022). Identity Sharing and Adaptive Personalization Influencing
Online Repurchases. Journal of Computer Information Systems, 62(4).
https://doi.org/10.1080/08874417.2021.1919939

 Adaptive Microservices for Dynamic E-commerce: Enabling Personalized Experiences through … 103

2. Cheng, S. W., Garlan, D., & Schmerl, B. (2009). Evaluating the effectiveness of the rainbow self-

adaptive system. Proceedings of the 2009 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2009. https://doi.org/10.1109/SEAMS.2009.5069082

3. Garlan, D., Cheng, S. W., Huang, A. C., Schmerl, B., & Steenkiste, P. (2004). Rainbow: Architecture-
based self-adaptation with reusable infrastructure. Computer, 37(10).
https://doi.org/10.1109/MC.2004.175

4. Huang, Z., Li, T., & Xiao, S. (2018). Research on Library Recommendation Reading Service System
Based on Adaptive Algorithm. Wireless Personal Communications, 102(2), 1963–1977.
https://doi.org/10.1007/s11277-018-5249-9

5. Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41–50.
https://doi.org/10.1109/MC.2003.1160055

6. Mendonca, N. C., Jamshidi, P., Garlan, D., & Pahl, C. (2021). Developing self-adaptive microservice
systems: Challenges and directions. IEEE Software, 38(2). https://doi.org/10.1109/MS.2019.2955937

7. Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Johnson, G., Medvidovc, N., Quilici, A.,
Rosenblum, D. S., & Wolf, A. L. (1999). An architecture-based approach to self-adaptive software.
IEEE Intelligent Systems and Their Applications, 14(3), 54–62. https://doi.org/10.1109/5254.769885

8. Raj, V., & Sadam, R. (2021). Performance and complexity comparison of service oriented architecture
and microservices architecture. International Journal of Communication Networks and Distributed
Systems, 27(1). https://doi.org/10.1504/IJCNDS.2021.116463

9. Seo, Y. D., Kim, Y. G., Lee, E., Seol, K. S., & Baik, D. K. (2018). Design of a smart greenhouse
system based on MAPE-K and ISO/IEC-11179. 2018 IEEE International Conference on Consumer
Electronics, ICCE 2018, 2018-January. https://doi.org/10.1109/ICCE.2018.8326276

10. Sunny, B. K., Janardhanan, P. S., Francis, A. B., & Murali, R. (2017). Implementation of a self-
adaptive real time recommendation system using spark machine learning libraries. 2017 IEEE
International Conference on Signal Processing, Informatics, Communication and Energy Systems,
SPICES 2017. https://doi.org/10.1109/SPICES.2017.8091310

11. Wan, H., & Yu, S. (2020). A recommendation system based on an adaptive learning cognitive map
model and its effects. Interactive Learning Environments, 2020.
https://doi.org/10.1080/10494820.2020.1858115

12. Wan, S., & Niu, Z. (2020). A hybrid e-learning recommendation approach based on learners’
influence propagation. IEEE Transactions on Knowledge and Data Engineering, 32(5).
https://doi.org/10.1109/TKDE.2019.2895033

13. Waseem, M., Liang, P., & Shahin, M. (2020). A Systematic Mapping Study on Microservices
Architecture in DevOps. Journal of Systems and Software, 170.
https://doi.org/10.1016/j.jss.2020.110798

