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Abstract: In the rapidly evolving landscape of e-commerce, the need for 
personalized experiences and real-time adaptation has become paramount. 
This article proposes a framework for adaptive microservices in the e-
commerce domain, leveraging machine learning techniques and real-time 
adaptation to enhance user experiences and drive business growth. The 
framework suggests implementing each e-commerce activity as an 
independent microservice, enabling modular development, scalability, and 
flexibility. Key microservices such as product catalog management, 
shopping cart management, order processing, and user management are 
identified and integrated into an architecture that fosters seamless 
communication and data exchange. To enable self-adaptation and 
personalization, a Monitor-Analyze-Plan-Execute (MAPE) loop is 
introduced. The monitoring phase involves integrating additional services to 
collect relevant data, including user interactions, search keywords, session 
data, and feedback. This data is leveraged in the analysis phase, where 
machine learning techniques are employed to preprocess and extract 
meaningful insights. Cosine similarity is utilized to calculate similarity 
scores between user preferences and available products, enabling the 
generation of personalized recommendations. The proposed approach 
focuses on connecting the product management microservice to a self-
adaptive mechanism, ensuring that the existing infrastructure remains 
largely untouched. This enables companies to enhance their e-commerce 
platforms without undergoing significant overhauls or disruptions. Another 
advantage lies in the flexibility and scalability offered by the modular 
microservices architecture. Companies can selectively integrate the self-
adaptive mechanism into the product management microservice, 
maintaining the autonomy and independence of other microservices. This 
flexibility facilitates scalability as businesses expand and encounter growing 
demands. 
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Introduction 

In recent decades, e-commerce platforms have undergone significant transformations driven by 
advancements in technology, in-depth studies on consumer behavior, and the evolving demands 
of expanding businesses. Numerous e-commerce platforms have incorporated dedicated mobile 
applications, thereby facilitating rapid and streamlined product purchases for buyers. Moreover, 
personalized purchasing experiences have been seamlessly integrated, with marketing 
campaigns increasingly including tailored targeting strategies based on meticulous customer 
data analysis, integrating browsing history, preferences, and duration of product interactions.  

Consequently, the data volume has surged, necessitating the adoption of sophisticated 
processing algorithms to profoundly improve the shopping experience and, by extension, 
streamline business operations. Noteworthy examples include recommendation systems, 
customer support chatbots, fraud detection mechanisms, inventory management systems, 
dynamic pricing algorithms, topic modeling techniques for discerning sentiment from customer 
reviews, and predictive analytics for anticipating demand patterns on specific products. Taken 
together, these use-cases highlight the extensive usage of machine learning algorithms and 
artificial intelligence frameworks in the creation and enhancement of modern e-commerce 
platforms. 

Traditional monolithic architectures have exhibited constraints in scalability, displaying rigidity 
in adapting to decision-making processes and the integration of emerging technologies. By 
definition, a monolithic approach to an e-commerce platform entails its development as a 
cohesive entity, wherein all constituent components are consolidated within a singular codebase, 
sharing a unified database and infrastructure. The interconnected nature of these components 
renders the platform susceptible to the propagation of errors, whereby a fault occurring within a 
specific domain has the potential to reverberate throughout the entirety of the system, thereby 
introducing amplified risks and augmenting the expenditures associated with development and 
rigorous testing. 

In contrast to the monolithic architecture paradigm, microservices have emerged as a highly 
favored approach in recent years. The microservices architecture provides resilience, scalability, 
and flexibility, effectively addressing the inherent limitations of monolithic architectures. The 
implementation methodology revolves around the partitioning of the application into smaller, 
self-contained entities, tailored to specific business activities or business domains. These 
discrete entities can be independently deployed, scaled, and developed. The cohesion among 
them is maintained through robust communication mechanisms such as REST APIs, event-
driven systems, or messaging frameworks. Each microservice operates as an autonomous entity, 
with its own dedicated database. Any errors that may arise within one microservice remain 
confined, isolated from the operational integrity of other components, thereby minimizing risks 
and mitigating costs (Raj & Sadam, 2021). This architectural integrates very well with the 
DevOps culture (Waseem et al., 2020) and agile methodologies, facilitating accelerated 
development cycles and advanced testing capabilities.  

Even with the incorporation of all these facets, navigating through vast datasets can prove to be 
a big challenge. The integration of product recommendation systems has become an almost 
indispensable requirement for customer retention and the augmentation of user engagement. 
These systems meticulously analyze vast datasets that include browsing histories, product 
views, time spent within specific sections of the website, as well as user preferences and 
interests. However, to truly enhance the efficacy and quality of services provided by an online 
shop, the integration of a self-adaptive recommendation system becomes imperative. This 
adaptive mechanism considers the fluidity of user preferences, the availability of stock, the 
integration of new products in the business line, the dynamic pricing landscape and even system 
restrictions. By continuously adapting to these ever-evolving factors, the self-adaptive 
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recommendation system ensures the delivery of pertinent, tailored recommendations that align 
precisely with users' evolving needs and desires, culminating in an elevated user experience. 

Literature Review 

In (Mendonca et al., 2021) a self-adaptive system is defined as a system that can dynamically 
monitor and adapt its behavior to preserve and enhance its quality attributes in uncertain 
operating conditions. The variations of self-adaptation are provided to a system by adding an 
additional layer that analyzes data regarding the effects of its actions, determines whether they 
exceed or remain within predefined constraints, and implements a set of modifications to restore 
the system's state or manage its behavior in a controlled manner. This additional layer simply 
entails running checks within the loop over the entire system (Seo et al., 2018). The MAPE 
(Monitor-Analyze-Plan-Execute) loops (Kephart & Chess, 2003) represent a common model 
used in self-adaptive systems. They enable the system to continuously monitor its state, analyze 
collected data, plan, and execute adaptation actions based on the analysis results. Monitoring 
involves gathering real-time information about the system, such as performance metrics, 
resource status, or user feedback. These data are analyzed in the analysis stage to identify 
anomalies, trends, or issues that require adaptation. In the planning stage, the system utilizes the 
analyzed information to develop strategies and adaptation actions. Here, decisions are made 
regarding the changes needed to improve performance and meet quality objectives. The 
execution stage involves implementing the planned actions to adjust the system accordingly. 
These actions may include resource scaling, parameter adjustments, or configuration changes, 
for example.  

The MAPE loops operate in an iterative manner, where the system continuously adapts as it 
receives and processes new monitoring data. This model allows systems to react in real-time to 
environmental changes and fluctuating requirements, ensuring performance and reliability in 
uncertain conditions.  Although architecture-based self-adaptation is appealing in theory, it 
cannot be always easily applied. One challenge is devising solutions that can effectively handle 
a wide range of systems with diverse characteristics. Additionally, there is a pressing need to 
explore approaches that minimize the costs associated with integrating external control 
mechanisms into a system. In (Garlan et al., 2004) those problems were addressed, and the 
Rainbow framework was introduced. The RAINBOW framework provides a comprehensive 
approach to designing and implementing adaptive systems. It consists of six key components: 

o Reconfiguration: The ability to dynamically modify the system's structure, behavior, and 
configuration based on changing environmental conditions or goals. 

o Architectural model: A formal representation of the system's architecture that captures its 
components, connectors, and their relationships, enabling analysis and reasoning about 
system behavior. 

o Implementation: The actual realization of the system's components and connectors, 
incorporating mechanisms for monitoring, analyzing, and executing adaptations. 

o Negotiation: The process of making decisions about system adaptations based on multiple 
stakeholders' requirements, goals, and constraints, considering trade-offs and conflicts. 

o Observation: Continuous monitoring and collection of data about the system's internal and 
external states, including performance metrics, environmental conditions, and user 
feedback. 

o Workbench: A set of tools and techniques that support the development, deployment, and 
management of self-adaptive systems, including simulation, analysis, and testing 
capabilities. 

In (Cheng et al., 2009) authors outline the requirements for a benchmark environment to enable 
effective comparisons of the Rainbow framework with other self-adaptive techniques and assess 
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how well Znn.com meets those requirements, concluding that the rainbow framework proved to 
provide fast and efficient integration results. In the context of Znn.com, when the response time 
exceeds a certain threshold, the Rainbow self-adaptive system can take specific actions to 
improve performance. 

Regarding adaptive recommendation systems, few studies describe their integration. In (Huang 
et al., 2018), a framework is proposed for recommendation suggestions and predicting user 
behavior in a library context. The framework consists of online and offline components. The 
online components involve data collection, preprocessing, and data mining. They generate 
recommendations by analyzing predefined rules by enabling adaptive online recommendation 
services. The study utilizes the university library as an example, employing the sliding window 
method, association rule algorithms, and recommendation set generation algorithms. The results 
demonstrate the effectiveness and feasibility of the proposed method through theoretical 
analysis and experimentation. In (Sunny et al., 2017), the implementation of a real-time 
recommendation of TV channels to viewers in real-time system using Apache Spark is 
described. Similar scenarios are treated and described in (Bui et al., 2022; H. Wan & Yu, 2020; 

S. Wan & Niu, 2020). 

Auto adaptive microservices have the advantage of managing behavior in such a way that they 
can handle dynamic situations and dynamically allocate resources considering changing 
operating conditions. The development of such mechanisms also enables the dynamic 
adjustment of microservices configurations, the adoption of various scaling options, responses 
provided by the system and the variations of communication between them. In terms of 
implementation methodology, in (Oreizy et al., 1999), a set of questions is proposed that 
developers must consider when defining such a system. These questions are presented in the 
table below (Table 1), along with corresponding answers, aimed at developing a framework of 
methods and functionalities to enhance the service that handles products through automatic self-
adaptation of the recommended product set and dynamic pricing based on specific product 
demand. 

Table 1. Design guidelines for a self-adaptive microservice in the context of an e-commerce website 

Question Answer 

Under what conditions 
does the system undergo 
adaptation? 

The system undergoes adaptation when there is a need to enhance the functionality of 
the product catalog microservice with product recommendations and dynamic pricing. 
These conditions should be defined under the business goals, considering changes in 
user behavior or market trends. 

Should the system be 
open-adaptive or closed-
adaptive? 

The system should be open-adaptive, allowing for the introduction of new product 
recommendation algorithms, pricing strategies, and adaptation plans during runtime. 

What type of autonomy 
must be supported? 

The system must support a range of autonomy levels, from fully automatic adaptation 
where the microservice independently adjusts the product recommendations and 
pricing, to human-in-the-loop adaptation. 

Under what 
circumstances is 
adaptation cost-effective? 

Adaptation is considered cost-effective when the benefits gained from improved 
product recommendations and dynamic pricing outweigh the costs associated with 
implementing and maintaining the adaptation mechanisms. 

How often is adaptation 
considered? 

Adaptation should be considered based on the specific needs and requirements of the e-
commerce system. It can be implemented with policies ranging from continuous 
adaptation, where real-time user interactions and market changes trigger immediate 
adjustments, to periodic adaptation, where adaptation is performed at regular intervals 
based on predefined schedules or business cycles. 

What kind of information 
must be collected to make 
adaptation decisions? 
How accurate and 
current must the 
information be? 

The system needs to collect relevant information such as user preferences, browsing 
history, purchase patterns, market trends, and competitor analysis. The accuracy and 
currency of this information should be as up-to-date as possible to ensure accurate 
analysis and decision-making. Real-time data integration and monitoring mechanisms 
can be employed to gather the most recent information for adaptation. 

Source: Made by author. 



 Adaptive Microservices for Dynamic E-commerce: Enabling Personalized Experiences through … 99 

 

Proposed Methodology 

Each activity required in an e-commerce system can be implemented as a microservice, as an 
independent service that handles a specific functionality of the ecommerce platform. The 
product catalog microservice can be responsible for managing and storing information about the 
available products, including their attributes, pricing, and inventory. The shopping cart 
microservice can handle the management of customers' selected items and their quantities, 
allowing users to add, remove, and update products in their cart. Another microservice could be 
the order management microservice, which handles the processing of customer orders, including 
order validation, payment processing, and order fulfillment. The user management microservice 
can handle user authentication, registration, and account management, ensuring secure access to 
the platform for both customers and administrators. Each of these microservices can be 
developed and deployed independently, allowing for easy scalability, modular development, and 
flexibility in adapting to changing business needs. The microservices can communicate with 
each other through APIs or messaging protocols to enable data exchange within the ecommerce 
platform.  

An example of such an architecture for an e-commerce platform is presented in Figure 1. 

 

Fig. 1. Microservices architecture for e-commerce platform 

Source: Made by author. 

 

To improve and add self-adaptation to the product management microservice, we propose 
integrating a MAPE loop into the above architecture, as depicted in Figure 2. 
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Fig. 2. Monitor-Analyze-Plan-Execute loop interaction with the product management service. 

Source:  Made by author. 

In the monitoring phase, the goal is to integrate additional services under a plug-and-play 
system for collecting data relevant for the product management service. The following steps 
were followed for collecting relevant data while minimizing the impact on the platform's 
codebase and core architecture. Used data sources include server log files from where 
information about user interactions, search keywords, accessed pages, and session data were 
extracted. Additionally, tracking code can be injected into JavaScript scripts. Google Analytics 
provides a convenient mechanism for integration, but customizable solutions can also be built. 
Furthermore, an event tracking system can be integrated with other services. In this case, 
various events are considered, such as adding products to the cart, completing orders, or adding 
product reviews. Questionnaires with relevant questions can be included within or outside the 
platform to directly collect data on user preferences. Additionally, the classic A/B testing 
method can generate relevant data by presenting different versions of product presentation pages 
or pricing variants. 

In the analysis phase, the collected data will be preprocessed to prepare it for building the 
recommendation model. Specifically, the similarity score will be calculated between the 
attributes related to the names and descriptions of the preferred products and the products added 
to the cart with the other similar attributes of products in the product catalog database. The 
textual data was cleaned by removing special characters, converting to lowercase, and handling 
stop words and, also, textual data was encoded into numerical representations, such as using TF-
IDF. Feature vectors were constructed for the preferred products and the products in the catalog 
using their encoded representations and cosine similarity was used in order to calculate the 
similarity scores between the feature vectors. The higher the similarity score, the more similar 
the products are. The products were ranked based on their similarity scores and the first five 
were selected and returned as possible recommendations for the user. The entire approach is 
presented in Figure 3. 

During the planning phase, different constraints were identified in which the recommendation 
system should be triggered, and the recommended products should be displayed to the user. 
These conditions were translated into events that triggered the dynamic adaptation of the 
product lists, such as adding or removing products from the database, as well as modifying the 
data related to these products. Other events included new user registrations, the start of 
promotions, and feedback provided by each user (product reviews, ratings, changes in searched 
product categories through accessed keywords). These events can be monitored using various 
mechanisms. Database Triggers can be used to detect events such as adding or removing 
products, modifying product data, or new user registrations. These triggers can be set up to 
execute certain actions or notify the system when specific changes occur for notifying the 
service in charge for data collection that needs to be provided for the recommendation system 
for the products to be correctly returned. Also, the recommendation system can be configured 
for webhook notifications from the product service and trigger the appropriate actions in 
response. If the e-commerce platform integrated with real-time data streams, stream processing 
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frameworks or technologies like Apache Kafka, Apache Flink, or Apache Spark can be used to 
analyze the stream and detect events based on predefined rules or patterns. 

 

Fig. 3. Simple recommendation model using cosine similarity. 

Source:  Made by author. 

Results and simulations 
To measure the impact of adding the self-adaptation loop to the product management service, a 
series of scenarios were designed for a test environment with 10.000 products for which the 
response time was tracked. The description of the scenarios is as follows: 

Single User: Measure the response time when a single user requests recommendations. The 
response time of the recommendation system was tested for a user with a small purchase history 
compared to a user with a large purchase history. 

Concurrent Users: Simulate a scenario where multiple users are simultaneously requesting 
recommendations.  

Peak Load: We also wanted to record the response time during peak usage periods when the 
system experiences high traffic.  

Cold Start: Evaluate how quickly the system can generate relevant recommendations for users 
with minimal information. 

Catalog Update: By making changes to the product catalog, such as adding new items or 
updating existing ones, the response time was tracked. 

The results are presented in Table 2. The baseline response time refers to the average response 
time without the integration of the self-adaptive recommendation system. 
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Table 2. Response time comparison for different test scenarios  

Test Scenario No. Of Users Average Response Time (ms) over baseline 
Single User 1 100 
Concurrent Users 10 360 
Peak Load 20 420 
Cold Start 1 180 
Catalog Update 1 215 

Source: Made by author. 

The response time measurements indicate the self-adaptation loop does not introduce delays 
during system startup, or when the product catalog is updated. However, when concurrent users 
access the recommendation system the waiting time increases, because it handles data in an 
iterative manner. However, synchronous requests can significantly improve response time in the 
context of the described system. By utilizing asynchronous processing, the system can handle 
multiple requests concurrently, reducing overall response time and improving scalability. 
Additionally, the preprocessing steps involved in data preparation can be optimized to further 
enhance response time. Techniques such as parallel processing, distributed computing, or 
optimized algorithms can be employed to expedite data preprocessing and reduce the time 
required for feature extraction, encoding, and similarity calculations. Furthermore, using 
caching mechanisms can help improve response time for recurring requests. By storing and 
retrieving precomputed results or frequently accessed data, the system can avoid redundant 
calculations and serve responses more quickly. 

Conclusions  

This article proposes the implementation of an adaptive microservices architecture for dynamic 
e-commerce platforms. The microservices architecture allows for the modular development and 
scalability of the system, with each microservice handling specific functionalities such as 
product catalog management, shopping cart management, order processing, and user 
management. To enhance the product management microservice, a MAPE (Monitor-Analyze-
Plan-Execute) loop was integrated into the architecture. This loop enables self-adaptation by 
monitoring relevant data, analyzing it, planning appropriate actions, and executing those 
actions. By leveraging machine learning and real-time adaptation, the recommendation system 
can provide personalized product recommendations to each user. This enhances the user 
experience by presenting relevant and tailored suggestions based on their preferences, browsing 
behavior, and feedback. Personalization increases user engagement, satisfaction, and the 
likelihood of making a purchase. It also increases cross-selling and up-selling opportunities. The 
self-adaptive recommendation system can be easily integrated into the existing architecture, 
providing flexibility to adapt and evolve as business needs change. 
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