BULETINUL Vol. LIX 75 -104 Seria
Universitatii Petrol — Gaze din Ploiesti No. 1/2007 Stiinte Economice

Cycle: UML FOR MANAGERS (V)
The Class Diagram (continuation)

Gabriel Irinel Marcu, Liviu Dumitrascu

Universitatea Petrol-Gaze din Ploiesti, Bd. Bucuresti 39, Ploiesti
email: gimarcu@upg-ploiesti.ro, Idumitrascu@upg-ploiesti.ro

Abstract

This paper continues description of UML class diagram wich represents the structure of an object-
oriented application. The present paper describes the class relations of association, aggregation,
compounding, dependency and generalisation/specialisation. Also, presents the concepts of navigability,
multiplicity, association and qualified association.

Key-words: object, class, class diagram, object diagram, encapsulation, polymorphism, abstracting,
attribute, methods, operations, association, aggregation, compounding, dependency, navigability,
multiplicity, association class, qualified association, generalisation/specialisation, class models, derived
attributes, static attributes, static operations, abstract method.

Class Relations

Classes are basic elements of the class diagram. An application obviously demands for the
modelling of more classes. Isolated classes will never allow for the modelling of a system and
of the different interactions between its components.

UML proposes more solutions for the connection between classes.

Class relations express the semantic or structural relations. The most frequently used relations
are: association, aggregation, compounding, dependency and inheritance.

Remark. Even if the relations are described within the class diagrams, they express in the
majority of the cases, the connections between objects. Due to this fact, the binary relations
between classes can generate the intervention of more objects within each class. The notion of
multiplicity allows for the control of the number of objects controlling each instance of the
relation.

Association

UML language defines the concept of association between two classes. This concept is very
interesting and it does not belong to the elementary concepts of the object modelling and it also
allows for the definition of the relations between more objects.

Within UML an association is made between two classes. It has a name and two extremities that
allow for the plugging to each of the associated classes. When an association is defined between

mailto:gimarcu:@
mailto:ldumitrascu:@upg-ploiesti.ro

76 Gabriel Irinel Marcu, Liviu Dumitrascu

two classes it means that the instantiated objects of the two classes can be connected between
them.

Figure 35

ok fig3s J

Person Address

live

The name of the association, more than once corresponds to a verb in the infinitive with a
supplementary observation (a full triangle) of the sense of the reading if ambiguity might occur.
Sometimes, a stereotype better characterizing association replaces the name.

Figure 35 displays the association called lives which associates the classes Person and
Address. This association signifies the fact that the instance objects of the class Person and

the instance objects of the class Address can be connected between them. In other words, this
signifies the fact that persons live at addresses.

Each extremity of the association indicates the role of the class within the relation and it
specifies the number of objects involved in the association (figure 36).

Figure 36

rubiplicity name b mutiplicity

role : role
!

Indicate the reading sense of name/zterentype
In the stereotype caze thiz sign iz placed
between << .3

Figure 37 represents the same association (figure 34) where we have stated the names of the
roles for each class and the minimum and the maximum number of objects before being
connected. In the context of this association, the class Person represents he inhabitant while
the class Address represents residency. In other words, we can say that this association

signifies the fact that the persons live at addresses and that they are the inhabitants of those
premises.

Figure 37

ok fig3y J

Person , ' Address
dweller live +residence

* 1

Remark. The diagram in figure 37 has to be read as follows:

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 77

0 Premises 1: for one inhabitant there is a minimum of one premises and a maximum of
one residency.

0 Inhabitant *: for one premises there is minimum O inhabitants and a maximum of an
infinite number of inhabitants.

Within UML it is possible for one association to be able or not to express navigability.

The most frequently used reflexive association is the binary one (connecting two classes). Not
in few cases, the two extremities of the association lead to the same class. In this case, the
association is reflexive.

The reflexive association between classes has as a main function the structuring of objects
belonging to the same class.

Figure 38 illustrates an example of reflexive association for the elements of a list.

Figure 38
ok fig3s J
pairts
+previous [0.1
Itern
0.1
+next
Remarks:

0 The association points connects the class Element to itself by means of a reflexive
association.

0 An element has maximum a precedent and a follower. The corresponding cardinality of
the two extremities of the association is the following: 0. . 1.

The Relation of Aggregation

Aggregation constitutes a type of relation between two classes which is stronger than an
association. As opposed to association, the aggregation involves a notion of ownership between
objects if, obviously, these objects can be connected (for example, the destruction of one can
lead to the destruction of the other).

An aggregation is a particular form of association. It represents the relation of structural or
behavioural inclusion of an element within a group. Contrary to association, aggregation is a
transitive relation.

An aggregation is represented by means of a void rhomboid placed close to the owner class and
eventually with an arrow towards the possessed class, the connection between the two being
materialised by means of a continuous line.

Figure 39 illustrates an aggregation relation between a class called Room and a class called
Video-projector. In each course room there is one video-projector placed on the ceiling.

78 Gabriel Irinel Marcu, Liviu Dumitrascu

Figure 39

ot fig3d J

VideoP rojector

Remark. An instance of the class VideoProjector can be protected by more lecture rooms.

Like in the case of a relation of association, it is possible for one to mention certain navigability
and a certain multiplicity on the aggregation line.

Figure 40 models the following sentence by means of an aggregation relation in UML: <<A
room has walls>>.

Figure 40

ik figdo J

Room

wall

Remarks:
o A wall can belong to two contiguous rooms.
0 Aroom contains at least a (circular!) wall.

The Relation of Compounding

Compounding, also called <<composite aggregation>=> is a particular aggregation. This means
that all compounding may be replaced by means of an aggregation which, in its turn, may be
replaced through an association. The only consequence is the information loss.

The compounding relation describes a structural content between instances. This implies the
idea that, particularly, the composite element is responsible for the creation and the destruction

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 79

of its elements. As a consequence, the destruction of the composite object automatically
involves the destruction of its components. An instance of the part always belongs to maximum
one instance of the composite element.

Compounding represents the strongest type of the relation between classes; it is used in order to
indicate complete possession of a class towards another. At a given moment, the possessed class
can only be involved into a single compounding relation. The destiny of the instances of the
classes associated by means of compounding is always connected; if the owner class is
destroyed, the same thing will happen to the possessed class as well.

A relation of compounding can be interpreted as a relation of the type <<...is part of...>>. A
compounding must be read from the class possessed to the possessing class. For example, let us
imagine that a Window must possess (contain) a title bar. This relation can be represented by
means of a class TitleBar which <<...is part of...>> the class Window.

A relation of compounding is represented by means of a plane rhomboid placed close to the
possessing class and eventually with an arrow in the direction of the possessed class. The
multiplicity next to the possessing class can take only two values: 0 or 1. Particularly,
multiplicity is 1.

Figure 41 presents an example of compounding between a class called Window and a class
called TitleBar.

Figure 41

cak figdi J

Window TitleB ar

As for an association relation, it is possible to maintain navigability and multiplicity on the
compounding line.

Figure 42 illustrates a compounding relation between the class Room and the class
VideoProjector with the observation that there is one projector in each room, attached to
the ceiling.

Figure 42

ok figd2 J

"0.1

VideoP rojector

80 Gabriel Irinel Marcu, Liviu Dumitrascu

Remark. As the compounding relation is structural, UML language authorises the imbricate
presentation as well (figure 43).

Figure 43

Chalet

[Door 1] “w‘induw -

Figure 44 illustrates the compounding relation between the class ShopCart and the class
ShopCartLine. A line of the basket can belong only to one single basket, the latter being
determined by the totality of its lines.

The destruction of the basket triggers the automatic destruction of all its lines.

Figure 44

ot figdd J

ShopCart ShopCartLine

¢

Figure 45 illustrates the compounding relation between the class Client and the classes
BankCard and Address.

Figure 45

cik figds J

Client Address

-—

invoiceAddress

¢

0.1

BankCard

Figure 46 illustrates the compounding relation between the class MaterialsCatalogue and
Material for the application <<Material Management>>.

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation)

81

Figure 46
ok figdh J
MaterialCatalogue Material
-
Figure 47 models the structure of an email address.
Figure 47
o figd7 J
EmailMassage Messagehttachement

Figure 48 illustrates the compounding relation between the classes Folder and File.

Figure 48

ek figds J

Folder

File

The Relation of Dependency

A relation of dependency is a unidirectional relation expressing a semantic dependency between

the elements of a model. It is represented by means of an oriented discontinuous line.

Dependency means the weakest form of a class relation.

A dependency between two classes signifies the fact that one of the two uses the other under

one way or another.

A dependency can be interpreted as a relation of the following type: <<...uses a...>>

Figure 49 illustrates a dependency between the class Window and another class called

ResizeWindowEvent.

82 Gabriel Irinel Marcu, Liviu Dumitrascu

Figure 49

ek figdd J

Window ResizeWWindowE vent

Remark. Figure 49 allows us to see that the Window does not share a durable interaction with
ResizeWindowEvent.

Navigability

For associations, one can additionally model navigability. In order to mention the fact that one
can navigate from one class to another, we shall use an arrow in the direction of the class
towards which we can navigate. (see figure 50).

If one can navigate in two directions, we shall not mention any arrow. As the UML
specifications state it, eliminating the arrows does not allow for the differentiation of the non-
navigable associations from those with double navigability.

Remarks:

o If an extremity is navigable, then the object can navigate towards the object it is
connected to and thus one can obtain the values of its properties or perform the
operations it is responsible for.

o In figure 50, the inhabitants can navigate towards their residency (and not the other way
round) which allows for the obtaining of, for example, the number of the street.

Figure 50

ok figsl J

Person * . Address
+ residence

+ohneller live

Explicitly, one can forbid any navigation to a class towards another class, placing a small ‘X’ on
the association line, next to the class towards which navigability is not possible.

Figure 51 displays an association towards a class with the name Polygon and a class with the
name Point.

Because it is impossible to navigate from an instance of the class Polygon towards an instance
of the class Point, we shall place one navigability arrow towards Point as well as a small ‘x’
on the association line.

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 83

Figure 51

ok figsi J

Polygon

E: defred by p

#vertices

Point

T

Remark. The polygon is defined by means of a group of points playing the role of crowns. The
crowns of the polygon are not accessible but through the Pol'ygon class and its descendents.

Figure 52 displays an example of modelling navigation by means of attributes which reiterate
the oriented association example illustrated in figure 52 [3].

Figure 52

cck figs2? J

Polygon

Avertices P aint[3..#]

Figure 53 synthetically presents the navigability types allowed within UML.

Figure 53

ot ﬁgSSJ

: bicli rectio nal :
III without nand gahility III

uniclire ctional

84 Gabriel Irinel Marcu, Liviu Dumitrascu

Multiplicity

Multiplicity indicates the number of objects susceptible of taking part into a given association.

The main multiplicities are: <<more>>(*); <<exact n>>(n); <<minimum n>> (n..*);
<<between n and m>>(n, m). It is also possible to have convex intervals: n;..ny; ns..ns Or ny..ny,
ns, Ng...* etc. If no value is specified, then multiplicity has the implicit value 1. Then, when
multiplicity is used for an association, one must not place the values of the multiplicity between
accolades.

Figure 54 presents an association explicitly mentioning a multiplicity: a hotel resides at least in
two rooms.

Figure 54

o figsd J

Hotel Room

Association Class

The association class is a programmed link reaching the class level. It possesses both the
characteristics of an association and those of a class and it can thus contain attributes valorised
for each connection.

An association class possesses a name and attributes like any normal class. An association class
is presented in the same way as the traditional class but a discontinuous line connects it to the
association it represents.

An association class possesses the properties of a class and of an association. The advantage of
such a modelling is that the initial association between the two classes is a lot more visible
within the model. Each association class can be transformed into two associations and an
autonomous class (figure 55 [1]).

Figure 55

ot fig55a J

Class C

¢ | o

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 85

et fighsh J

Class C

Figure 56 presents an example of association class regarding the basket administration (the 11-nd
solution, Application for the administration of a virtual shop selling books).

Figure 56

ok figsE J

ShopCart Book

-fatal:double 1|

ShopCartLine

~juantityint =1
-total:double

Remarks:

0 ShopCartLine is associated to the relation between the ShopCart and the Book so
that an object ShopCart connected to an object Book can accept as attachment an
instance ShopCartLine containing the attributes quantity and stating how many
books of the same type the client intends to buy. The attribute quantity is implicitly
positioned on 1.

0 The aggregation represented in the figure clearly expresses the fact that an object
ShopCart contains more objects Book (the aggregation expresses a relation of the
type <<...contains...>>, <<...it is made of...>> and for this reason it is not necessary
to nominate it.

0 The attribute /total of the class ShopCartLine expresses the total cost of the
items which are to be ordered by the client for a book and the attribute /total of the
class ShopCart mentions the overall cost of the basket calculated by putting together
all the lines in the basket.

o Each connection between the basket and a book contains a value of the attribute,
quantity representing one line of the basket.

Figure 57 models a connection between a navigator (browser) and a web site by means of an
association class (connection).

86 Gabriel Irinel Marcu, Liviu Dumitrascu

Figure 57

ok figs7 J
* ’7

WebPage links

WebSite dores

-LH:String
v |-oonfioString

Connection

-conD ate:Date
-LH: String

used by

Quialified Association

Sometimes, the association between two classes grants little information regarding the actual
involvement of the classes within the relation which makes the modelling imprecise. This
imprecision particularly refers to the multiplicity of an extremity of the association and/or the
duration of the association compared to the associated classes.

Qualifying an association in various cases allows for the transformation of an undetermined or
infinite multiplicity into a defined multiplicity.

Qualifying an instance represents a value or a group of values allowing for the finding of such
an instance. A qualification is often an index, such as for example a key to retrieve an article
within a relational database. This qualification is then introduced at a different extremity as one
or more attributes (figure 58) where the instances of class 2 are qualified at the level of class 1.
The qualifier represented as a small rectangle is placed between the association and the source
element.

Figure 58

cik figss J

Class1 Class2

qualifiert
qualifier2

Figure 59 (a,b) describes the modelling of a vector with or without qualifier. In figure 59 b an
object of the class I'tem is referred to by means of an Integer type index.

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 87

Figure 59

ok figsd]

Vector e

) #

Vector e

index:int | !

by 1

Typical multiplicities for qualified associations are the following: O. -1 (a small object can be
selected but it is not a necessity); 1 (each qualifier selects an object and only one); * (the
qualifier divides the quantity of objects in portioned quantities). Figure 60 presents the
modelling of qualified associations between two classes: Article and Catalogue.

Figure 60

e figg0 J

Article Catalogue

-nurmber: String
-desc ption: String
-price:double

+

kelong to

Article Catalogue

-desciption: String o number

-price:double

The Generalisation/Specialisation Relation

The generalisation describes a relation between a general class (basic class) and a specialised
class. The specialised class is completely coherent with the basic class but it involves additional
information (attributes, operations, associations).

An object of the specialised class can be used everywhere where an object of the basic class is
authorised. In such a case we can speak about a generalising structure.

The general class is also called superclass and the specialised classed is also called subclass.

The generalisation is represented as a finished association with a white triangle with the arrow
towards the generalised class (figure 61).

88 Gabriel Irinel Marcu, Liviu Dumitrascu

Figure 61
ok figs1 J
Classi
Class T {abstract}
Clags2 Class3 Class2 Class3
Remarks:

0 A relation of generalisation can be interpreted as a relation of the following type:
<<...isan...>>. As opposed to associations, generalisation relations do not contain any
name or any multiplicity.

o Within the modelling process various generalization structures contain abstract classes
and interfaces.

0 UML authorises multiple heritage, which means that a class can constitute the object of
several generalizations, each of them representing a particular aspect of the respective
class.

From the implementation and programming language point of view, the generalisation is
associated to the inheritance. The subclass inherits all the attributes and methods of the
superclass. The subclass can redefine the inherited models and can sometimes affect even the
direction of generalization.

Various modern languages —Java, C# forbid multiple heritage; for such situations, these
languages appeal to the concept of interface.

Figure 62 presents an example of relation of generalisation between the classes incomplete,
10Devices, Modem and Keyboard.

Figure 62

ok figs2 J

iNavicas

T]

Keyboard

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 89

Remark. The generalisation tree is incomplete: there are also other peripheral elements of 1/0:
screens, mouse etc.

Figure 63 uses the generalisation/ specialisation relation in order to model the sentence: A bank
account belongs to an individual or to an institution.

Figure 63

ck fige3 J

Bankfcc ount Person

+ helong

Juridic alPerson PhysicalPerson

Figure 64 presents the diagram of classes which models simple geometrical figures (circle,
point, line) and the composed ones. [3]

Remarks:
o All figures involve the operations draw() and moveto().

0 Associated models are not known so the class Figure is abstract.

Figure 64
ok figbd J
Fqure
ComplexFigure
+olraa Tvoid KF—
+moweto () void
+efraw vl
jx +roveto(vold
SimpleFigure
+edraw (ol
+maveto flvoid <|
Circle Point Line
+olrana)i o) void o) void
+rnoveto () void +moveto () void +moveto () void

90 Gabriel Irinel Marcu, Liviu Dumitrascu

A figure can be specialised as a simple figure or as a composed figure which, in its turn, can be
composed (aggregation relation) from many figures.

Object Diagram

Representing the Objects

In the majority of cases, the static description of a system is accomplished by means of the class
diagram. This allows for the simplification of modelling and for the synthesising of the common
characteristics for more objects. Sometimes it is useful, even necessary, to use an object
diagram as well.

An object diagram is a topographical representation of the objects of a system at a given
moment. They represent instances of the classes (not classes!), that is why they are also called
instance diagrams.

Figure 65

Student 1..10

Figure 65 describes a Grades relation between students, on the one hand, and grades on the
other hand. Certain students do not have grades; others have more. Reversely, certain grades are
not distributed to the students and there are students having the same grade.

Starting from the graphic representation of the Grades relation in figure 65, we can deduce the
object diagram-Grades. Graphically, one object is presented as a class with two
compartments, that of the name and that of the attributes.

The compartment of class operations is not clear because the interpretation of operations is the
same for all objects and all objects of a class possess the same operation.

As opposed to the name of a class, the name of an object is underlined. In the case of an
anonymous object, the name of the class is also indicated (figure 66).

Figure 66

ok figee J

: Employees

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 91

When the object is to be called by means of the name, its identity can be added before the name
of the class (figure 67).

Figure 67

ok fige? J

Georgesou : Employee

When the name of the object is enough for the identification of the object and the name of the
class is obvious, we can use from the context the notation for sibling instances as shown in
figure 68.

Figure 68

ok figes J

GEOrgesc;

The attributes receive values. UML authorises the following alternatives for the attributes of the
object.

<attribute>: <type>= <value>

<attribute>= <value>- this notation is recommended because it often allows for the
deducing of the type.

<attribute> -this notation is recommended when the value of the attribute is of no
particular interest.

Remarks:
0 The class diagram mainly contains the classes and the relations between them.

0 When an object diagram is created started from a class diagram, classes are instantiated
and become objects, while the relations become connections when instantiated.

o0 Graphically, a connection is presented as a relation but the name of the relation is
underlined.

Figure 69 displays by means of an object diagram the Grades relation in figure 65.

Figure 69

ok figEd J

_I— 10 Grade
lting : Studert
G Grade

92 Gabriel Irinel Marcu, Liviu Dumitrascu

One should also note that the name of the object is underlined while the name of the class is not.

This graphic element is enough in order to make the difference between the object diagram
(figure 64) and the class diagram (figure 70).

Figure 70
cck figFo J
Student N Grade
-narme: String -val byte
haz
Remarks:

0 Since the students’ grades are independent, the Grades association is not an
aggregation or a compounding.

0 The names of the students and the values of the grades are represented by means of
character string and Enumeration type attributes: 1. . 10.

0 One can pose the problem of a unique representation for a given grade- two grades may
have the same value.

0 The relation grades can be more simply represented by means of a full group attribute
called grades: Set [full] within the Student class. The grades are thus values and not
objects.

Figure 71 represents a class HistoricalData, two instances, four attributes.

Figure 71

ok g7 J

ol : Historicall ate

date:06/06/1347

HistoricalDate

-clate:Date
-description: String

description:" The
landing from
Nomandie"

o2 : HistaricalD ste
date:01/07/1347

description:'" My
birth day"

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 93

Restrictions

OCL Language

UML offers the possibility to express restrictions by means of the modelling constructions we
have already studied: cardinalities, type of attribute etc.

Still, these types of restrictions have proven to be insufficient. For other restrictions, UML
proposes to express them in a natural language.

There is also the OCL language (Object Constraint Language), an object restriction language
expressing them as logical conditions. OCL language is part of the UML notation.

OCL mainly allows for the expressing of four types of restrictions: the invariants, the
preconditions, the postconditions and the guarding conditions.

Within the class diagrams, the most often used restrictions allow for the specification of the
initial values of an object or of an extremity of an association, of the heritage rules:
({complete}, {incomplete}, {overlaps}, {distinct} etc), of a method to reduce
the portability of an association ({subset}, {score} etc), expressing the way the objects
evolve ({frozen}, {addOnly} etc), the organization ({ordered}, {frozen} etc).

For more information consult the OCL specifications for UML 2 available on the OMG site
(http://www.omg.or/).

Class Models

The same way as an interface allows for the defining of the specifications for the objects which
are to interact with a class, UML also provides abstractings for the class type a class will
interact with. For example, one can define a class List which can contain any type of object
(in Java thus can be translated as Ob ject). Still, if one wants for a class, in our case List, to
be capable of structuring any type of object, we definitely impose that all objects stored in a
given list to be of the same type. UML allows for the specification of this abstracting type by
means of class models.

One can mention that a class should be based on a class model (the class is templated) by
describing a discontinuous rectangle in the upper right corner of this class which contains a list
of formal parameters. Each parameter contains a name and a type as well as an optional implicit
value.

Figure 72
ok fig72 J
| e 1
RN | .
o omntiyoe

-zlementsElem erd Ty

94 Gabriel Irinel Marcu, Liviu Dumitrascu

Figure 72 presents an example of a class List which can contain any type of object. This
example uses ElementType as a generic name of the class model. Practically, this generic
type is called T (figure 72).

Various programming languages (C++) use templated classes. The aim is that of regrouping the
associated behaviours to the structure of the class, regardless of the objects it contains.

Figure 73 models the class List as a standard class, adding to this definition one or more
parameters CT;..CT, representing the target objects classes. Once defining the class Book, the
operations of inserting, of suppressing and of searching for a book are automatically applied.

Figure 73

ok fig73 J

——————————————

+inzert (v CT 1 woid
+rem0ve(\cCT):V\?|d List<Book-
+search (v CT 1 void

Opinions regarding the Construction of a Class Diagram

Approaches

The construction of a class diagram as well as of other UML diagrams also depends on the aim
and the finality of the modelling.

If one looks for the finality of the modelling, there are at least three points of view guiding the
modelling [1], [3]:

0 The point of view regarding specification- within the informatic application area the
accent falls on the interfaces of the classes;

0 The conceptual point of view- the accent falls on the concepts of the domain and on the
connection between them;

0 The point of view regarding the implementation- the accent falls on detailing the
concept and on implementing each class.

Remark. Taking into account the set objectives, you will get models which are sometimes
different. From this point of view, one must state the context of the modelling before actually
starting to build a diagram

The process of modelling by means of the class diagrams proposes the following stages [3]:
0 Identifying the classes of the domain;

Identifying the associations between classes;

Identifying the attributes of the classes;

Organising and optimising the diagrams by using the heritage principle;

Testing the access paths to the classes;

© ©0 O o ©oO

The stating and the affirmation of the model.

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 95

General Rules
The stages we have presented have a guiding character. Yet, within the process of realising a
class diagram one will have to respect the following simple and efficient rules [3]:

0 getrid of redundant classes;

0 delay the adding of new classes up to the moment of choosing the conception and the
realization;

0 do not add charts or lists of objects to the classes;

0 when a class disposes of more responsibilities, find a simplifying solution (see the
abstracting principle);

for the modelling of objects, differentiate the physical objects from their description;

an attribute (structural property) can be represented by means of an association, a
description with a text within a class or a combination between the two;

0 avoid attribute access operations (get and set) which are in the majority of cases
useless.

Implementing the UML Concepts within an Object-Oriented
Language (Java)

From UML to Java

UML is a visual modelling language and Java, C# are textual programming languages.

UML is richer than the programming languages in the sense that it offers stronger and more
abstract ways of expressing.

Java is a rapid, elegant and strong programming language starting with the launching of the 1.02
version, Java attracting programmers by means of its friendly syntax, the object oriented
characteristics, the memory administration and portability.

Java 5.0 (versions 1.5 and newer ones) has brought major changes within the proper language,
making it simpler for programmers and adding to it already popular characteristics.

Java cycle is different from the model. The information contained by an UML model has as
objective generating the application code.

To accomplish an UML language it is not easier than writing a Java code.
The information contained within the models has to be synchronised with the Java code.
There is in this respect a privileged way of translating UML concepts into Java statements.

This chapter offers you a synthesis of the major correspondences between the UML modelling
concepts and the rules for generating the Java code.
UML Correspondence Rules towards Java

Table 4 presents a synthesis of the major correspondences between the UML modelling
concepts and the way they are implemented within Java.

96 Gabriel Irinel Marcu, Liviu Dumitrascu
Table 4.
Concept UML Java
public class A {
ok Clasa J

}

Class
Hasah

Class(abstract)

cik Claza .ﬂhstracta)

ClasaBfabstract}

public abstract class B {

}

interface ExInterfata

Interface
cet Interfata) {
void metodal();
}
== interface ==
Eximterfata
+metodat Cnwoid
Interface — E nfe rface ExInterfata
void metodal();
== irterface == }
Exinterfata

+metodat (nwvaid

Fi5

1
ClasaEx

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 97

Table 4.(cont.)

package dictionary;

package s
Dictionaty
Attribute import java.util. Date;
ek Clasa Exernplu) public class ClasaExemplu {
private String atributl; private
Date atribut2;
ClasaE xemplu
-atribut: String }
-atribut2: Date
Attribute abstract public class
ok Claza Exemplu J clasaExempIu {
(of class) private String atribut 1;
protected Date atribut 2;
ClasaExemplu private static int
-atribut:String atributClasa=18;
Hatribut2:Date 3
-atributClasscint =18
Operation public class ClasaExemplu {
et Clasa Exemply private String atributl;
protected Date atribut2; public
int metoda() {
Clasak xemplu
-gtribut: String }
#atribut2:Date }
+metodar Tint
Operation public class clasaC {
cd Opﬂﬁﬁedecbsa) private static int
(of class) atributl= 18;

ClazaC

-atribut!int=185

+setAtribut] Cacint) woid

public static void
setatributl (int a) {

98

Gabriel Irinel Marcu, Liviu Dumitrascu

Table 4.(cont.)

Generalisation

ok Generalizare J

ClazaG

-attibtt:int
-atributZ:int
-gtribt 3 in

ClasaSub

-attibutd:int

public class ClasaSub
extends ClasaG {
private int atribut4;

}

Realisation

ok exemplu J

public class C implements
B, A{
private String atribut 1;

CSPE private String atribut 2;
i == interface == public void op3 () {
B .
+op () void
3 e +op30)void }
°"2°-"°'1 = public void opl () {
I l oo
c public void op2 () {
-atribut]: String
-gtribut2: String }
+op (void
+op2 (1 voidd
+op3 (void
Navigable association public class Al{
g ot assoct) private Bl bil;
3
M B
Navigable association public class A2{
g ot assoc2) private B2[] b2;
3
A2 B2

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 99

Table 4.(cont.)

Navigable association

etk 333003 J

w {ardered) B3

public class A3{
private List<B3> b3= new
ArrayList<B3>();

Navigable association

ot gsz0cd J

qualif:Q

0.1

public class A4{

private Map<Q,B4> b4= new
MapSet<Q,B4>();

}

Bidirectional
association

ok hidirectional J

+a
0.1

.1

+h

public class A {
private B b;

public class B {
private A a;

100

Gabriel Irinel Marcu, Liviu Dumitrascu

Table 4.(cont.)

Reflexive association

ot asociere refexva)

public class A {
private Ab [];

}

A
+3
M
1.4 | +h
Composition public class A {
private int atributl;
private B b;
et Compunere) private static class B {
private int atribut2;
}
A
-stributtint b
B
_atribut:int
Association class . public class C {
Lo Clase hgetcion private int atributl;
private int atribut2;
A private A a;
private B b;
= }
________ ~atribut tint

-atribut;int

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 101

Remarks:
0 The UML tools transform any UML class into Java class stored in separate file.
An abstract class is always written using italic style of font.

The UML interface is translated in Java language using keyword interface.

© O O

In Java language the attributes become class member variable. The attribute type could
be simple (int, double, float, long, char etc.) or could be a class (String, Date etc.).

The UML class atribute become static member variable in Java language.

The UML operations are class methods in Java language and class operations become
private static methods of class.

0 The generalization in Java language is the inheritance feature of object oriented
programming and will be introduced by keyword extends.

0 The realisation of one UML interface is done by Java language keywords
implements.

0 A navigable association of multiplicity 1 is translated in Java language using a member
variable of referred class type. A multiplicity of kind <<*>> is translated in Java
language using a collection of referred class.

0 The bidirectional association is translated into Java language by one member variable of
referred class type in each class. The variables identifier is the name of the role placed
at the end of the association.

0 The UML reflexive association is translated into Java by a member variable of same
class type.

Figure 75 presents the generated Java code starting from the classes, book, magazine, CD
showed in figure 74.

Figure 74

ok fig7s J

Document

-ickirit
-title: String
-gtate:int

+definestate (rwid

|

ch Book Magazine

-code: String -ighn String iz String

102 Gabriel Irinel Marcu, Liviu Dumitrascu

Figure 75

public class Document {
private int id;
private String title;
private int state;
public void defineState() {
// your code here
}

public class CD extends Document {
private String code;

public class Book extends Document {
private String isbn;

public class Magazine extends Document {
private String issn;
}

Figure 77 displays the generated Java code starting from the classes University,
LectureRoom, Projector presented in figure 76.

Figure 76

cik fig77 J

University LectureRoom

Projector

Figure 77

public class University {
public java.util_Collection lectureRoom = new java.util._TreeSet();

public class LectureRoom {
public University university;
public Projector projector;

}

public class Projector {
public LectureRoom lectureRoom;
3

Figure 78 displays the generated Java code starting from the classes Vector and I'tem (figure
59).

Cycle: UML FOR MANAGERS (V). The Class Diagram (continuation) 103

Figure 78

public class Vector {
public Item[] item;

public class Item {

}

Figure 79 displays the generated Java code starting from the classes Person, BankAccount
presented in figure 63.

Figure 79

public class BankAccount {

public class Person {
private BankAccount[] bankaccount;

public class JuridicalPerson extends Person {

public class PhysicalPerson extends Person {

}

Figure 81 displays the generated Java code starting from the classes RealPile, RealCell
(figure 80).

Figure 80
ok figdl
0.1 ,7
RealPile RealCell
0.1
L., ——————| ~valueeal
: top -hest: RealCeall
+isE mpty (1 boolesn
== create =x+RealPile()RealPile == create == +RealCelllval real next:ReslCell)k RealCell
+push (value:real Twoid +gettalue(real
+pop el +zetvalue(val real) woid
+getilexd () RealZell *
+aetexdinest:RealC el vaid
Figure 81

public class RealPile {
public RealCell top;
public boolean isEmpty() {
// your code here
return false;

}
public RealPile(Q) {
// your code here

public void push(double value) {
// your code here

¥

public double pop(Q)
// your code here
return null;

104 Gabriel Irinel Marcu, Liviu Dumitrascu

public class RealCell {
private double value;
private RealCell next;
public RealCell(double val, RealCell next) {
// your code here

}

public double getvalue()
// your code here
return null;

}
public void setValue(double val) {
// your code here

}

public RealCell getNext() {
// your code here
return null;

}

public void setNext(RealCell next) {
// your code here

}

}

References

1. Balzert, H. - UML 2 compact, Eyrolles, Paris, 2005

2. Blanc,X,Mounier,l,Besse, C.-UML 2 pour les developpeurs, Eyrolles, Paris, 2006

3. Charroux, B, Osmani, S, Thierry-Mieg, Y. - UML 2, Pearson Education France,
Collection Syntex, 2005

4. Debrauner,L,Karam,N.-UML 2, Entrainez-vous a la modelisation, ENI, Paris, 2006

5. Pilone,D,Pitman, N.-UML 2. En concentre. Manuel de reference, O’Reilly, Paris, 2006

Roques, P. - UML 2 par la pratique, 5-¢ édition, Eyrolles, 2006

Ciclul: UML PENTRU MANAGERI (V)
Diagramele de clasa (continuare)

Rezumat

Articolul continua descrierea diagramelor de clasa, care reprezinta nucleul oricarei aplicayii software
orientate obiect. Articolul descrie relariile Tntre clase, relasii de asociere, agregare, compunere,
dependen¢da, generalizare/specializare, precum si conceptele de multiplicitate, navigabilitate si asociere
calificata.

